Кислород в природе. Применение кислорода Какую роль кислород играет в природе

1. Химическая природа кислорода и углекислого газа Кислород Роль кислорода в природе и его применение в технике Оксид углерода (IV). 2. Участие кислорода и углекислого газа в обмене газов в организме человека Парциальное давление кислорода и углекислого газа Гемоглобин Разновидности гемоглобина у человека. 3. Гипоксия. Влияние гипоксии на функциональное состояние человека. 4. Методы исследования функции внешнего дыхания. Функциональные пробы. 5. Изучение состояния внешнего дыхания у школьников с различной степенью физической подготовки. Конец >> Конец >> > Конец >>">



Кислород – самый распространенный элемент на Земле. В свободном состоянии молекулярный кислород входит в состав воздуха, где его содержание составляет 20,95% (по объему). Содержание в земной коре 47,2% (по массе). Кислород – важная составная часть углеводов, жиров, белков. Существует в виде двух аллотропных модификаций – молекулярный кислород (дикислород) и озон (трикислород). Наиболее устойчива молекула О2, обладающая парамагнитными свойствами. В лабораторных условиях кислород можно получить следующими способами: А) Разложением бертолетовой соли: 3KClO 3 = 2KCl + 3O 2 Б) Разложением перманганата калия: 2KMnO 4 = K 2 MnO 4 + MnO 2 + O 2 В) Нагреванием нитратов щелочных металлов (NaNO 3, KNO 3); при этом выделяется в свободном состоянии лишь 1/3 содержащегося в них кислорода: 2NaNO 3 = 2NaNO 2 + O 2 Основным источником промышленного получения кислорода является воздух, который сжигают и затем фракционируют. Вначале выделяется азот (t кип = -195,8˚С), а в жидком состоянии остается почти чистый кислород, так как его температура кипения выше (-183 ˚С) Широко распространен способ получения кислорода, основанный на электролизе воды. Физические свойства. При нормальных условиях кислород – бесцветный газ, без запаха и вкуса. Температура кипения 183˚С, тяжелее воздуха, плотность 1,43 г/см 3. В 1л воды при нормальных условиях растворяется 0,04г кислорода. Химические свойства. Как элемент, занимающий место в правом верхнем углу периодической системы Д.И. Менделеева, кислород обладает ярко выраженными неметаллическими свойствами. Имея на наружном энергетическом уровне шесть электронов, атом кислорода может перейти к предельно заполненной 8-й электронной оболочке (условие максимальной химической устойчивости), присоединив 2 электрона. Поэтому в реакциях с другими элементами (кроме фтора) кислород проявляет исключительно окислительные свойства. Кислород образует соединения со всеми химическими элементами, кроме гелия, неона и аргона. С большинством элементов он взаимодействует непосредственно, кроме галогенов, золота и платины. Скорость реакции, как с простыми, так и со сложными веществами зависит от природы веществ, температуры и других условий. Такой активный металл, как цезий, самовозгорается в кислороде воздуха уже при комнатной температуре. С фосфором кислород активно реагирует при нагревании до 60˚С, с серой – до 250˚С, с водородом – более 300˚С, с углеродом (в виде угля и графита) – при ˚С: 4P + 5O 2 = 2P 2 O 5 S + O 2 = SO 2 2H 2 + O 2 = 2H 2 O C + O 2 = CO 2 Горение водорода в кислороде протекает по цепному механизму. Эта реакция начинается с образования активных нестабильных частиц – свободных радикалов-носителей неспаренных электронов: H 2 + O 2 = OH + OH (зарождение цепи) Радикалы OH легко реагируют с молекулой H 2: OH + H 2 = H 2 O + H Атом водорода реагирует далее с молекулой O 2 с образованием вновь радикала OH и атома кислорода и т. д. Эти элементарные акты способствуют развитию цепи. При горении сложные веществ в избытке кислорода образуются оксиды соответствующих элементов: 2H 2 S + 3O 2 = 2SO 2 + 2H 2 OCH 4 + 2O 2 = CO 2 + 2H 2 O СероводородМетан C 2 H 5 OH + 3O 2 = 2CO 2 + 3H 2 O4FeS O 2 = 2Fe 2 O 3 + 8SO 2 ЭтанолКолчедан Рассмотренные реакции сопровождаются выделением только теплоты, так и света. Такие процессы с участием кислорода называются горением. Кроме указанного типа взаимодействия, имеют место и такие, которые сопровождаются выделением только тепло теплоты, а свет не выделяется. К ним, прежде всего, следует отнести процесс дыхания.


При участии кислорода совершается один из жизненно важнейших процессов – дыхание. Окисление кислородом углеводов, жиров и белков служит источником энергии живых организмов. В организме человека содержание кислорода составляет 61% от массы тела. В виде различных соединений он входит в состав всех органов, тканей, биологических жидкостей. Человек вдыхает в сутки м 3 воздуха. Кислород широко используется практически во всех отраслях химической промышленности: - для получения азотной и серной кислот, - в органическом синтезе, - в процессах обжига руд. Процесс производства стали невозможен без кислорода, металлургия использует свыше 60% всего промышленного кислорода. Горение водорода в кислороде сопровождается выделением значительной энергии – почти 286 кДж/моль. Эта реакция используется для сварки и резки металлов. Жидкий кислород применяется для изготовления взрывчатых смесей. Огромная потребность в кислороде ставит перед человечеством серьезную экологическую проблему сохранения его запасов в атмосфере. До настоящего времени единственным источником, пополняющим атмосферу кислородом, является жизнедеятельность зеленых растений. Поэтому особо важно следить за тем, чтобы их количество на Земле не уменьшалось.


CO 2 (углекислый газ) имеет линейную структуру. Связи в молекуле образованы за счет четырех электронных пар. В молекуле оксида углерода (IV) имеет место sp-гибридизация. Две sp-гибридные орбитали углерода образуют две сигма-связи с атомами кислорода, а оставшиеся негибридизированные p-орбитали углерода дают с двумя p-орбиталями атомов кислорода пи-связи, которые располагаются в плоскостях, перпендикулярных друг другу. Изложенное объясняет линейное строение CO 2. CO2 образуется при термическом разложении карбонатов. В промышленности CO2 получают при обжиге известняка: CaCO 3 = CaO + CO 2 В лаборатории его можно получить действием разбавленных кислот на карбонаты: CaCO 3 + 2HCl = CaCl 2 + CO 2 + H 2 O При обычных условиях CO 2 – бесцветный газ в 1,5 раза тяжелее воздуха. Растворим в воде (при 0 ˚С 1,7 л CO 2 в 1 л H 2 O). При повышении температуры растворимость CO 2 сильно уменьшается и его избыток удаляется из раствора в виде пузырьков, образующих пену. Это свойство используют для изготовления шипучих напитков. При сильном охлаждении CO 2 кристаллизуется в виде белой снегообразной массы, которая в спрессованном виде испаряется очень медленно, понижая температуру окружающей среды. Этим и объясняется ее применение в качестве «сухого льда». Не поддерживает дыхания, но служит источником питания зеленых растений (фотосинтез). Свойство CO 2 не поддерживать горения используется в противопожарных устройствах. При высоких температурах оксид углерода (IV) может реагировать с металлами, сродство которых к кислороду выше, чем у самого углерода (например, с магнием): CO 2 +2Mg = 2MgO + C При растворении CO 2 в воде происходит их частичное взаимодействие, ведущее к образованию угольной кислоты H 2 CO 3.


1. Химическая природа кислорода и углекислого газа Кислород Роль кислорода в природе и его применение в технике Оксид углерода (IV). 2. Участие кислорода и углекислого газа в обмене газов в организме человека Парциальное давление кислорода и углекислого газа Гемоглобин Разновидности гемоглобина у человека. 3. Гипоксия. Влияние гипоксии на функциональное состояние человека. 4. Методы исследования функции внешнего дыхания. Функциональные пробы. 5. Изучение состояния внешнего дыхания у школьников с различной степенью физической подготовки. Конец >> Конец >> > Конец >>">



Альвеолы легких представляют собой полушаровидные впячивания стенок альвеолярных ходов и дыхательных бронхиол. Диаметр альвеол – мкм. Количество альвеол в одном легком человека в среднем 400 млн (со значительными индивидуальными вариациями). Большая часть наружной поверхности альвеол соприкасается с капиллярами малого круга кровообращения. Суммарная площадь этих контактов велика – около 90 м 2. От альвеолярного воздуха кровь отделяет так называемая легочная мембрана, состоящая из эндотелиальных клеток, двух основных мембран, плоского альвеолярного эпителия, слоя суфактанта. Толщина легочной мембраны всего 0,4 – 1,5 мкм. Газообмен в легких осуществляется в результате диффузии кислорода из альвеолярного воздуха в кровь (около 500 л в сутки) и углекислого газа из крови в альвеолярный воздух (около 430 л в сутки). Диффузия происходит вследствие разности парциального давления этих газов в альвеолярном воздухе и их напряжением в крови. Парциальное давление газа в газовой смеси пропорционально процентному содержанию газа и общему давлению смеси. Оно не зависит от природы газа. Так, при давлении сухого воздуха 760 мм.рт.ст. парциальное давление кислорода примерно 21%, то есть 159 мм.рт.ст. При расчете парциального давления в альвеолярном воздухе следует учитывать, что он насыщен водяными парами, парциальное давление которых при температуре тела равно 47 мм.рт.ст. Поэтому на долю парциального давления газов приходится 760 – 47 = 713 мм.рт.ст. При содержании кислорода в альвеолярном воздухе 14% парциальное давление его будет 99,8 мм.рт.ст. (около 100 мм.рт.ст.). При содержании диоксида углерода 5,5% парциальное давление соответствует 39,2 мм.рт.ст (около 40 мм.рт.ст.). Парциальное давление кислорода и диоксида углерода в альвеолярном воздухе является той силок, с которой молекулы этих газов стремятся проникнуть через альвеолярную мембрану в кровь. В крови газы находятся в растворенном (свободном) и химически связанном состоянии. В диффузии участвуют только молекулы растворенного газа. Количество газа, растворяющегося в жидкости, зависит от: 1) Состава жидкости, 2) Объема и давления газа над жидкостью, 3) Температуры жидкости, 4) Природы исследуемого газа. Чем выше давление данного газа и чем ниже температура, тем больше газа растворяется в жидкости. При давлении 760 мм.рт.мт. и температуре 38 ˚С в 1 мл крови растворяется 2,2% кислорода и 5,1 % диоксида углерода. Растворение газа в жидкости продолжается до наступления динамического равновесия между количеством растворяющихся и выходящих в газовую среду молекул газа. Сила, с которой молекулы растворенного газа стремятся выйти в газовую среду, называется напряжением газа в жидкости. Таким образом, в состоянии равновесия напряжение газа равно парциальному давлению газа над жидкостью. Если парциальное давление газа выше его напряжения, газ будет растворяться. Если парциальное давление газа ниже его напряжения, то газ будет выходить из раствора в газовую среду. Проницаемость легочной мембраны для газа выражают величиной диффузионной способности легких. Это – количество газа, проникающего через легочную мембрану за 1 мин на 1 мм.рт.ст. градиента давлений. Диффузионная способность легких пропорциональна толщине мембраны. В норме диффузионная способность легких для кислорода около 25 мл/мин мм.рт.ст. Для диоксида углерода вследствие высокой растворимости этого газа в легочной мембране диффузионная способность в 24 раза выше. Парциальное давление и напряжение кислорода и диоксида углерода в легких приведены в таблице. Парциальное давление и напряжение кислорода и углекислого газа в легких (мм.рт.ст.) Диффузия кислорода обеспечивается разностью парциальных давлений, равной около 60 мм.рт.ст., а диоксида углерода – всего лишь около 6 мм.рт.ст. Время протекания крови через капилляры малого круга (в среднем 0,7 с) достаточно для практически полного выравнивания парциального давления и напряжения газов: кислород растворяется в крови, а диоксид углерода переходит в альвеолярный воздух при относительно небольшой разнице давлений объясняется высокой диффузионной способностью легких для этого газа. ГазыВенозная кровьАльвеолярный воздух Артериальная кровь O2O CO


Гемоглобин является основной составной частью эритроцитов и обеспечивает дыхательную функцию крови, являясь дыхательным ферментом. Он находится внутри эритроцитов, а не в плазме крови, что: А) Обеспечивает уменьшение вязкости крови (растворение такого же количества гемоглобина в плазме повысило бы вязкость крови в несколько раз и резко затруднило бы работу сердца и кровообращение); Б) Уменьшает онокотическое давление плазмы, предотвращая обезвоживание тканей; В) Предупреждает потерю организмом гемоглобина вследствие его фильтрации в клубочках почек и выделения с мочой. По химической структуре гемоглобин представляет собой хромопротеид. Он состоит из белка глобина и простетической группы гема. В молекуле гемоглобина содержится одна молекула глобина и 4 молекулы гема. Гем имеет в своем составе атом железа, способный присоединять и отдавать молекулу O 2. При этом валентность железа не изменяется, то есть оно остается двухвалентным. Железо входит в состав всех дыхательных ферментов тканей. Такая важная роль железа в дыхании определяется строением его атома – большим числом свободных электроном, способностью к комплексообразованию и к участию в реакциях окисления – восстановления. В крови здоровых мужчин содержится в среднем гемоглобина 145 г/л с колебаниями от 130 до 160 г/л. В крови женщин находится около 130 г/л с колебаниями от 120 до 140 г/л. В клинике часто определяют цветовой показатель – относительное насыщение эритроцитов гемоглобином. В норме он составляет 0,8-1. Эритроциты, имеющие такой показатель, называют нормохромными. Если показатель больше 1, то эритроциты называют гиперхромными, а если меньше 0,8 – гипохромными. Гемоглобин синтезируется эритробластами и нормобластами костного мозга. При разрушении эритроцитов гемоглобин после отщепления гема превращается в желчный пигмент билирубин. Последний с желчью поступает в кишечник, где превращается в стеркобилин и уробилин, выводимые с калом и мочой. За сутки разрушается и превращается в желчные пигменты около 8 г гемоглобина, то есть около 1% гемоглобина, находящегося в крови.


В первые 7-12 недель внутриутробного развития зародыша его красные кровяные тельца содержат примитивный гемоглобин. На 9-й неделе в крови зародыша появляется фетальный гемоглобин, а перед рождением – гемоглобин взрослых. В течении первого года жизни фетальный гемоглобин почти полностью заменяется гемоглобином взрослых. Весьма существенно, что фетальный Hb обладает более высоким сродством с O 2, чем гемоглобин взрослых, что позволяет ему насыщаться при более низком напряжении кислорода. Гем разных гемоглобинов одинаков, глобины же отличаются по своему аминокислотному составу и свойствам. В норме гемоглобин содержится в виде 3 физиологических соединений. Гемоглобин, присоединивший кислород, превращается в оксигемоглобин – HbO 2. Это соединение по цвету отличается от гемоглобина, поэтому артериальная кровь имеет ярко-алый цвет. Оксигемоглобин, отдавший кислород, называют восстановленным или дезоксигемоглобином (Hb). Он находится в венозной крови, которая имеет более темный цвет, чем артериальная. Кроме того, в венозной крови содержится соединение гемоглобина с углекислым газом – карбогемоглобин, который транспортирует CO 2 из тканей к легким. Гемоглобин и оксигемоглобин неодинаково поглощают световые лучи длиной, что легло в основу метода оценки насыщения крови кислородом – оксигемометрии. По этому методу ушную раковину или кювету с кровью просвечивают электрической лампочкой и с помощью фотоэлемента определяют насыщение гемоглобина кислородом. Гемоглобин обладает способностью образовывать и патологические события. Одним из них является карбоксигемоглобин – соединение гемоглобина с угарным газом (HbCO). Сродство железа гемоглобина к CO 2 превышает его сродство к O 2, поэтому даже 0,1 % CO в воздухе ведет к превращению 80% гемоглобина в HbCO, который не способен присоединять кислород, что является опасным для жизни. Слабое отравление угарным газом – обратимый процесс. При дыхании свежим воздухом CO постепенно отщепляется. Вдыхание чистого кислорода увеличивает скорость расщепления HbCO в 20 раз. Метгемоглобин Ме(Hb) тоже патологическое соединение, является окисленным гемоглобином, в котором под влиянием сильных окислителей (феррицианид, перманганат калия, амил- и пропилнитрит, анилин, бертолетова соль, фенацетин) железо гем из двухвалентного превращается в трехвалентное. При накоплении в крови больших количеств метгемоглобина транспорт кислорода тканям разрушается и может наступить смерть. Миоглобин. В скелетных мышцах и миокарде находится мышечный гемоглобин, называемый миоглобином. Его простетическая группа идентична гемоглобину крови, а белковая часть – глобин – обладает меньшей молекулярной массой. Миоглобин человека связывает до 14 % общего количества кислорода в организме. Это его свойство играет важную роль в снабжении работающих мышц. При сокращении мышц из кровеносные капилляры сдавливаются, и кровоток уменьшается либо прекращается. Однако благодаря наличию кислорода, связанного с миоглобином, в течение некоторого времени снабжение мышечных волокон кислородом сохраняется.


1. Химическая природа кислорода и углекислого газа Кислород Роль кислорода в природе и его применение в технике Оксид углерода (IV). 2. Участие кислорода и углекислого газа в обмене газов в организме человека Парциальное давление кислорода и углекислого газа Гемоглобин Разновидности гемоглобина у человека. 3. Гипоксия. Влияние гипоксии на функциональное состояние человека. 4. Методы исследования функции внешнего дыхания. Функциональные пробы. 5. Изучение состояния внешнего дыхания у школьников с различной степенью физической подготовки. Конец >> Конец >> > Конец >>">



Гипоксия представляет собой патологическое состояние, характеризующееся пониженным напряжением кислорода в клетках и тканях организма. Причины, определяющие развитие кислородного голодания, различны, поэтому и сами гипоксические состояния по физиологическому механизму развития неоднородны. Это определило необходимость классификации гипоксии, среди которых выделяют четыре основные формы: - гипоксическую, - циркуляторную, - гермическую, - гистотоксическую. Снижение парциального давления кислорода во вдыхаемом воздухе приводит в развитию артериальной гипоксемии, которая является пусковым механизмом развития гипоксического состояния, вызывая, по меньшей мере, три связанных между собой комплекса явлений. Во-первых, под влиянием гипоксемии возникает рефлекторное увеличение напряжения функции систем, специфически ответственных за транспорт кислорода из окружающей среды и его распределение внутри организма, то есть гипервентиляция легких, увеличение минутного объема кровообращения, расширение сосудов мозга и сердца, сужения сосудов брюшной полости и мышц. Во-вторых, развивается активация адренергической и гипофизарно-адреналовой систем, то есть стресс-реакция. Этот неспецифический компонент адаптации играет роль в мобилизации аппарата кровообращения и внешнего дыхания, но вместе с тем избыточно выраженная стресс- реакция за счет катаболического действия может приводить к срыву адаптивных процессов в организме. Ведущим звеном патогенеза гипоксического состояния становится дефицит энергии, связанный с переходом обмена на менее энергетически выгодный анаэробный путь и нарушение сопряжения процессов окисления и фосфорилирования. Нарушается процесс взаимного окисления – фосфорилирования переносчиков электронов в дыхательной цепи митохондрий. Вслед за нарушением окислительно-восстановительного потенциала переносчиков электроном снижается окислительное фосфорилирование, энергообразование и процесс аккумуляции энергии в макроэргических связях АТФ и креатипфосфата. Ограничивая ре-синтез АТВ в митохондриях, острая гипоксия вызывает прямую депрессию функций ряда систем организма, и прежде всего ЦНС, миокарда и печени. В интенсивно работающих органах идет усиленный распад гликогена, возникают дистрофические явления, нарастает «кислородный долг» организма. Возникающие изменения еще более усиливаются под влиянием недоокисленных продуктов метаболизма. Наблюдаемая картина гипоксической гипогсии зависит от снижения парциального давления кислорода во вдыхаемом воздухе. Начиная с высоты 1000м, наблюдается увеличение легочной вентиляции, первоначально за счет увеличения глубины дыхания, а на высоте более 2000м гипервентиляция легких обусловлена и увеличением частоты дыханий. При этом глубина дыхания может снижаться за счет повышения тонуса дыхательных мышц и подъема диафрагмы, увеличения остаточного объема и снижения резервного объема выдоха, что субъективно оценивается, как чувство вздутия грудной клетки. На высотах более 3000м гипервентиляция приводит к гипокапнии, что может приводить к возникновению периодического дыхания и снижению выраженной гипервентиляции. В результате прямого действия сниженного парциального давления кислорода на гладкую мускулатуру легочных сосудов и выброса биологически активных веществ повышает легочное артериальное давление. Повышение давления в легочной артерии является фактором, определяющим повышение кровотока через газообменные структуры легких. При этом сужение просвета мелких легочных сосудов определяет равномерное кровоснабжение различных участков легких и повышение их диффузионной способности. Параллельно с изменениями в системе внешнего дыхания отмечается увеличение минутного объема кровотока в основном за счет преходящей тахикардии, начиная с высоты 2510 м, а у лиц с расстройством кардиореспираторной системы – сниженной физической выносливостью с высоты 1500м. В генезе тахикардии пусковым механизмом являются рефлексы с хеморецепторов синокаротидной и аортальной сосудистой области, к которым присоединяются адренергические влияния, связанные с фазой мобилизации стресс-реакции и реализующиеся через адренорецепторы миокарда. Существование влияние на клиническую картину гипоксической гипоксии оказывают более высокие приросты частоты пульса при выполнении даже легкой физической работы или при проведении ортостатической пробы. Наиболее чувствительной к дефициту кислорода является ЦНС, со стороны которой наблюдаются следующие изменения высших психологических функций: - повышается уровень эмоциональной возбудимости, - снижается критическое мышление, - замедляются тонко координированные реакции. На высотах м отмечаются нарушения функции зрительного и слухового анализатора, падает психическая активность, нарушаются кратковременная и оперативная память. На больших высотах к этим явлениям присоединяется тяжесть в голове, сонливость, головная боль, адинамия и тошнота. Развитию этих симптомов обычно предшествует эйфория. Кратковременное воздействие умеренной гипоксии может оказывать стимулирующий эффект на физическую и умственную работоспособность, но пребывание более 30 мин в высотах м уже может приводить к снижению физической и умственной работоспособности при чрезмерном функционировании кардиореспираторной системы. Так, уже в первые сутки пребывания на высоте 3000м максимальная физическая работоспособность может снижаться на 20-45% в зависимости от индивидуальной устойчивости и гипоксии. Поэтому физическая работа даже небольшой интенсивности в условиях гипоксии может оцениваться организмом как работа субмаксимальной или максимальной мощности, а следовательно, быстро приводить к утомлению и истощению резервных возможностей организма.


В сложной структуре компенсаторно-приспособительных процессов, развивающихся в организме человека на гипоксическое воздействие, Меерсон Ф.З. выделил 4 уровня координированных между собой механизмов: 1. Механизмы, мобилизация который может обеспечить достаточное поступление кислорода в организм, несмотря на дефицит его в окружающей среде (гипервентиляция, гиперфункция миокарда, обеспечивающая объем легочного кровообращения; и соответсвующее увеличение кислородной емкости крови). 2. Механизмы, делающие возможным достаточное поступление кислорода к мозгу, сердцу и другим жизненно важным органам, несмотря на гипоксию (уменьшение диффузного расстояния для кислорода между капиллярной стенкой и митохондриями клеток за счет образования новых капилляров и повышении проницаемости клеточных мембран; увеличение способности клеток утилизировать кислород вследствие роста концентрации миоглобина; облегчение диссоциации оксигемоглобина). 3. Увеличение способности клеток и тканей утилизировать кислород в крови и образовывать АТФ, несмотря на его дефицит (повышение сродства цитохромоксидазы, новообразованные митохондрий, увеличение сопряжения окисления с фосфорилированием). 4. Увеличение анаэробного ресинтеза АТФ за счет активации гликолиза. Необходимо учитывать ограниченные возможности этих механизмов, лимитирующим звеном которых выступают ограниченные резервы функциональных систем. Так, эффективность внешнего дыхания резко снижается при минутном объеме дыхания, превышающем 45л/мин; возможности гемодинамики лимитируются хронотропным и инотропным резервом миокарда. Лимитирующее значение резервных систем организма особенно отчетливо выявляется в ситуациях их дефицита (заболевания кардиореспираторной системы, интенсивная физическая нагрузка и др.), когда синдромы дизадаптации (острая головная болезнь, высокогорный отек легких, очаговая дистрофия миокарда) могут развиваться даже при пребывании на относительно малой высоте (м). Если резервные возможности физиологических систем позволяют поддерживать жизнедеятельность организма на должном уровне, то постепенно к механизмам мобилизации подключаются и другие механизмы, направленные на формирование долгосрочной устойчивой адаптации. Этап срочной реакции на гипоксию сменяется переходным. В переходной стадии дефицит макроэргических соединений в клетках, осуществляющих увеличенную функцию и подвергающихся действию гипоксии, вызывает активацию синтеза нуклеиновых кислот и белков. Эта активация протеинсинтеза охватывает необычно широкий круг органов и систем и приводит к формированию обширного системного структурного следа адаптации. Так, активация синтеза нуклеиновых кислот и белков в костном мозге становится основой пролиферации клеток эритроидного ряда, в легочной ткани она приводит к гипертрофии ткани легких и увеличению их дыхательной поверхности. Активация адаптивного протеинсинтеза в миокарде приводит к увеличению мощности адренергической регуляции сердца, значительному увеличению концентрации миоглобина, пропускной способности коронарного русла, а в целом – к увеличению мощности системы энергообеспечения сердца. В переходной стадии начинают активно функционировать механизмы, обеспечивающие повышение способности тканей и клеток утилизировать кислород из крови и образовывать АТФ, несмотря на его недостаток (увеличение окислительно-восстановительного потенциала ферментов тканевого дыхания, увеличение количества митохондрий, степени окисления и фосфорилирования субстратов). Также происходит повышение интенсивности анаэробных процессов и процессов нейтрализации недоокисленных продуктов метаболизма, таких как гликолиз, глюконеогенез, шунтирование лимитирующих звеньев цикла трикарбоновых кислот. Происходит формирование нового уровня гормональной регуляции физиологических систем организма, приводящего к снижению основного обмена и более экономному использованию кислорода тканями.


1. Химическая природа кислорода и углекислого газа Кислород Роль кислорода в природе и его применение в технике Оксид углерода (IV). 2. Участие кислорода и углекислого газа в обмене газов в организме человека Парциальное давление кислорода и углекислого газа Гемоглобин Разновидности гемоглобина у человека. 3. Гипоксия. Влияние гипоксии на функциональное состояние человека. 4. Методы исследования функции внешнего дыхания. Функциональные пробы. 5. Изучение состояния внешнего дыхания у школьников с различной степенью физической подготовки. Конец >> Конец >> > Конец >>">



Показатели легочной вентиляции подразделяются (условно) на анатомические величины. Они зависят от пола, возраста, веса, роста. Правильная оценка функционального состояния аппарата внешнего дыхания возможна лишь при сопоставлении абсолютных показателей с так называемыми должными величинами – соответствующими величинами у здорового человека того же возраста, веся, пола, роста. Различают легочные объемы и емкости. 1) Легочные объемы: - дыхательный объем (глубина дыхания); - резервный объем вдоха (дополнительный воздух); - резервный объем выдоха (резервный воздух); - остаточный объем (остаточный воздух) 2) Легочные емкости: - жизненную емкость легких (сумма дыхательного объема резервного объема вдоха и выдоха); - общую емкость легких (сумма жизненной емкости легких и остаточного объема); - функциональную остаточную емкость (сумма остаточного объема и резервного объема выдоха) -емкость вдоха сумма дыхательного и резервного объема вдоха). Функция внешнего дыхания изучается с помощью аппаратов закрытого и открытого типа. При закрытом способе исследования газообмена (спирография) используются отечественные спирографы Киевского и Казанского заводов медоборудования. В аппаратах закрытого типа исследуемый вдыхает воздух из аппарата и выдыхает его туда же, то есть дыхательные пути и аппарат составляют замкнутую систему. На пути выдыхаемого воздуха имеется поглотитель углекислого газа. На движущейся бумажной ленте регистрируется кривая записи дыхания – спирограмма. По ней определяют частоту и глубину дыхания, минутный объем, жизненную емкость легких и ее фракции, поглощение кислорода в единицу времени, рассчитывают дыхательные показатели и основной обмен. Исследование можно проводить при дыхании как атмосферном воздухом, так и кислородом. Необходимым условием является предварительное ознакомление с характером исследования (тренировочное дыхание в спирограф, мешок Дугласа). Результаты могут считаться достоверными в том случае, если подключение системы не изменяет естественного характера дыхания. Открытый способ исследования газообмена (метод Дугласа и Холдена). В аппаратах открытого типа исследуемый вдыхает атмосферный воздух извне через клапанную коробку. Выдыхаемый воздух поступает в мешок Дугласа (пластмассовый или резиновый мешок, емкостью литров) или газовый счетчик, непрерывно определяющий объем выдыхаемого воздуха. Подключение к системе производится одновременно с включением секундомера. Собранный воздух в мешке Дугласа перемешивается механическим путем и берется на анализ. Оставшийся воздух пропускают через газовые часы для определения объема выдохнутого воздуха. Последний, разделенный на число минут исследования, приводится по специальным таблицам к нормальным условиям (барометрическое давление 760 мм.рт.ст. и температура 0 ˚С). Полученная цифра составляет величину минутного объема дыхания. Анализ пробы выдыхаемого воздуха в газоанализе (аппарат Холдена) позволяет определить процент поглощения кислорода и выделения углекислого газа. Используя специальные таблицы, рассчитывают утилизацию кислорода в легких, выделение углекислого газа, дыхательный коэффициент, основной обмен. К системам открытого типа относится и аппарат Белау, позволяющий непрерывно регистрировать содержание кислорода и углекислоты в выдыхаемом воздухе. Пневмография. Метод исследования дыхательных движений грудной клетки. Запись дыхательной кривой (пневмограммы) производится при помощи резиновой манжетки, которую накладывают на грудь и соединяют с капсулой Марея и пишущим устройством. Получили также распространение пьезодтатчики, преобразующие механические движения грудной клетки в электрический ток. В этом случае пневмограмма регистрируется с помощью осциллографа. Метод пневмографии позволяет определить частоту и ритм дыхания, изменения фаз дыхательного цикла. В норме соотношение длительности вдоха и выдоха составляет 1:1,2 и 1,5. Рекомендуется проводить длительную запись пневмограммы по возможности при спокойном состоянии исследуемого. Метод пневмографии широко используется для исследования дыхания у детей раннего возраста, тогда как применение открытого и закрытого исследования газообмена в этом возрасте затруднительно. Пневмотахометрия. Метод измерения мощности форсированного вдоха и выдоха. Используется для суждения о сопротивлении дыхательных путей (бронхиальной проходимости). Датчик пневмотахометра представляет собой металлическую трубку с диафрагмой. Перепад давлений, возникающий при прохождении воздуха через отверстия диафрагмы, замеряется специальным манометром. Обследуемому предлагают взять наконечник трубки в рот и сделать предельно быстрый глубокий выдох. Затем после кратковременного отдыха и переключения крана производится быстрый вдох. Стрелка школы прибора показывает мощность воздушного потока в литрах в секунду. Измерения производятся троекратно, учитывается наибольший результат. Клиническое значение. При заболеваниях, сопровождающихся нарушением бронхиальной проходимости (хроническая пневмония, бронхиальная астма), обычно наблюдается снижение мощности форсированного выхода и, в меньшей степени, вдоха. Дыхательный объем. (ДО) – объем вдыхаемого и выдыхаемого воздуха при каждом дыхательном цикле. Он определяется путем деления минутного объема и частоты дыхания на число дыханий в минуту. Величина ДО зависит от возраста, физического развития и жизненной емкости легких. Исследование дыхательного объема и частоты дыхания позволяет объективно оценивать характер легочной вентиляции. Глубокое и редкое дыхание создает лучшие условия для легочного газообмена. Частое и поверхностное дыхание, наоборот, малоэффективно ввиду увеличения роли «вредного пространства» (воздуха, заполняющего дыхательные пути и не участвующего в газообмене) и неравномерности вентиляции разных участков легких. В детском возрасте отмечается значительная лабильность показателей внешнего дыхания и, в первую очередь, частоты и глубины дыхания. Дыхание ребенка с раннего возраста частое и поверхностное. С возрастом дыхание у детей становится реже (от 48 до 17 дыханий в 1 минуту) и нарастает дыхательный объем (от 30 мл в месячном возрасте до 275 мл в 15 лет – средние данные по Н.А.Шалкову). Клиническое значение. Практическую значимость имеет величина объема дыхания в сочетании с частотой дыхания. Так, при острых пневмониях и хронических заболеваниях органов дыхания (двусторонний диффузный пневмосклероз, пневмофиброз) дыхательный объем уменьшается, частота же дыхания увеличивается. Уменьшение объема дыхания наблюдается у больных с тяжелой недостаточностью кровообращения, выраженном застое в легких, ригидности грудной клетки, при торможении дыхательного центра. Резервный объем вдоха – максимальный объем воздуха, который можно вдохнуть после спокойного вдоха. Определяется по спирограмме. После спокойного вдоха испытуемому предлагается сделать максимально глубокий вдох, через секунд повторяется запись максимального вдоха. Измеряется высота зубца максимального вдоха. Измеряется высота зубца максимального вдоха от уровня спокойного вдоха. В соответствии с масштабом шкалы спирографа производится пересчет на миллилитры. У детей резервный объем колеблется в широких пределах мл. Резервный объем выдоха – максимальный объем воздуха, который можно выдохнуть после спокойного выдоха. После спокойного выдоха испытуемому предлагают максимально выдохнуть в спирометр, или спирограф. Измеряется величина зубца максимального выдоха от уровня спокойного выдоха до вершины зубца и делается перерасчет на миллилитры. Величина резервного объема выдоха у детей колеблется в пределах мл, составляя примерно 20-25% жизненной емкости легких. Клиническое значение. Значительное уменьшение резервного объемов вдоха и выдоха наблюдается при снижении эластичности легочной такни, бронхиальной астме, эмфиземе легких. Практическая значимость резервного объема вдоха и выдоха в силу значительной индивидуальной вариабельности несущественна. Жизненная емкость легких (ЖЕЛ) – максимальное количество воздуха, которое можно выдохнуть после максимального вдоха. Она измеряется с помощью спирометра или спирографа. Величина ЖЕЛ нарастает с возрастом. По Н.А. Шалкову, средние данные в возрасте 4-6 лет составляют 1100 – 1200 мл, увеличиваясь к годам до мл. У мальчиков ЖЕЛ бльше, чем у девочек. Рекомендуется оценивать ЖЕЛ исследуемого лица путем сравнения с должно жизненной емкостью легких (ДЖЕЛ). Предложены различные формулы определения долго жизненной емкости легких: ДЖЕЛ = (27,63-0,112 · возраст) · рост стоя (для лиц мужского пола); или (21,78-0,101 · возраст) · рост стоя (для лиц женского пола). По Антони: ДЖЕЛ = должный основной обмен · 2,3 (для женщин) или 2,6 (для мужчин). Полученную таким образом величину затем умножают на поправочный коэффициент 1,21. Снижение ЖЕЛ ниже 80% должной величины расценивается, как явление патологическое. Клиническое значение. Снижение ЖЕЛ наблюдается у детей при острых пневмониях и хронических заболеваниях органов дыхания. Оно прогрессирует по мере нарастания дыхательной недостаточности. ЖЕЛ снижается при заболеваниях сердечно-сосудистой системы, при ограничении подвижности грудной клетки, диафрагмы. Существенное значение имеет повторное измерение ЖЕЛ, в динамике. У детей ЖЕЛ увеличивается при занятиях спортом.


Общая емкость легких (ОЕЛ) – количество воздуха, находящегося в легких после максимального вдоха. Рассчитывается после определения остаточного объема и жизненной емкости легких. Зависит от составляющих ее легочных объемов. ОЕЛ увеличивается с возрастом у детей. Для определения должной общей жизненной емкости легких (ДОЖЕЛ) предложено исходить из величины должной ЖЕЛ. По Антони: ДОЖЕЛ равна ДЖЕЛ, умноженной на 1,32. Допускается колебание от этих средних величин на ± 15-20%. Клиническое значение. Резкое снижение ОЕЛ отмечается при диффузном фиброзе легких, в меньшей степени оно выражено при пневмосклерозе и сердечной недостаточности. Под влиянием занятий спортом ОЕЛ у детей увеличивается. Легочная вентиляция. Минутный объем дыхания (МОД) – количество вентилируемого в легких воздуха в минуту. Он может быть измерен при дыхании в мешок Дугласа, на газовых часах или по спирограмме. На спирограмме определяется сумма дыхательных движений в течение 3-5 минут и затем рассчитывается средняя величина за минуту. МОД в условиях основного обмена (в состоянии покоя, лежа, натощак) является величиной относительно постоянной. Средняя величина МОД у здоровых детей увеличивается от 2000 мл в возрасте 1 года до 5000 мл в 15-летнем возрасте. МОД у детей в мл на 1 м2 поверхности тела уменьшается с возрастом от 7800 мл в возрасте 1 года до 3750 мл в 15-летнем возрасте. Для оценки соответствия МОД предложено вычислять дыхательный эквивалент (ДЭ), выражающий количество литров воздуха, которое необходимо провентилировать, чтобы использовать 100 мл кислорода. ДЭ равен фактическому МОД, деленному на должное поглощение кислорода, умноженному на 10. Чем больше ДЭ, тем интенсивнее легочная вентиляция и тем меньше эффективность дыхательной функции. Большая частота и малая глубина дыхания у детей младшего возраста обуславливают меньшую эффективность дыхательной функции по сравнению с детьми старшего возраста. Это обуславливает постепенное уменьшение ДЭ с возрастом детей (в среднем от 3,8 в возрасте 5 месяцев до 2,4 к 15 годам). Клиническое значение. Увеличение МОД (гипервентиляция) наблюдается вследствие возбуждения дыхательного центра, повышения потребности организма в кислороде и ухудшения условий легочного газообмена: уменьшение дыхательной поверхности легких, затруднение диффузии кислорода и т.п. Уменьшение МОД (гиповентиляция) наблюдается вследствие угнетения дыхательного центра, уменьшения эластичности легочной ткани, ограничения подвижности легких (плевральный выпот, пневмоторакс и т.д.) Большое значение для выявления ранних (скрытых) форм дыхательной недостаточности приобретает определение МОД при физической нагрузке. При дыхательной недостаточности переход с дыхания воздухом на дыхание кислородом нередко сопровождается уменьшением МОД, что не наблюдается у здоровых лиц. Максимальная вентиляция легких (МВЛ) (предел дыхания, максимальный минутный объем, максимальная дыхательная емкость) – максимальное количество воздуха, которое может быть провентилировано в течение минуты. МВЛ определяется при помощи газовых часов, мешка Дугласа, прямой спирографии. В детском возрасте наиболее распространенным методом определения МВЛ является произвольное форсированное дыхание в течение 15 секунд (более длительная гипервентиляция ведет к повышенному выделению углекислоты из организма и гипокапнии). По спирограмме вычисляется сумма величин зубцов (в миллиметрах) и в соответствии с масштабом шкалы спирографа осуществляется пересчет на миллилитры. Измеренное количество выдыхаемого воздуха уменьшается на 4. МВЛ определяется в положении сидя, несколько раз, лучше в течение нескольких дней. При повторных исследованиях учитывают наибольшую величину. МВЛ у детей повышается с возрастом от 42 в 6-8 лет до 80 л в лет. Клиническое значение. Уменьшение МВЛ наблюдается при заболеваниях, сопровождающихся снижением растяжимости легких, нарушением бронхиальной проходимости, при сердечной недостаточности. Легочный газообмен. Поглощение кислорода (ПO 2) – количество поглощаемого кислорода в минуту. Оно определяется при спирографическом методе изучения функции внешнего дыхания либо по уровню наклона спирограммы (в аппаратах без автоматической подачи кислорода), либо по кривой регистрации подачи кислорода (в аппаратах с автоматической подачей кислорода – запись спирограммы горизонтальная). Учитывая масштаб шкалы спирографа и скорость движения бумаги, рассчитывают количество поглощенного кислорода в минуту. Потребление кислорода с возрастом увеличивается. У детей в возрасте 1-го года оно в среднем составляет 60 мл, в лет – 200 мл в минуту. Определение ПO 2 проводится в условиях основного обмена. Делением должного основного обмена на 7,07 получают должную величину ПO 2. Допустимо отклонение от средней должной величины на ± 20%. Клиническое значение. Увеличение ПO 2 отмечается при повышении окислительных процессов в организме, при увеличении легочной вентиляции. При физической нагрузке ПO 2 увеличивается. Уменьшение ПO 2 наблюдается при сердечной и легочной недостаточности, при значительном увеличении минутной вентиляции. Коэффициент использования кислорода (КИ) – количество мл кислорода, поглощаемого из 1 л вентилируемого воздуха. Рассчитывается путем деления количества поглощенного за минуту кислорода на величину МОД (в л). Определение проводится по одной и той же спирограмме, на одном и том же отрезке времени. Пользуются фактическими величинами МОД и ПO 2, определенных при комнатной температуре. Величина КИ увеличивается с возрастом детей от 20 мл на первом году жизни до 36 мл к 15 годам. Клиническое значение. Снижение КИ свидетельствует об ухудшении и снижении эффективности легочной вентиляции, нарушении процессов диффузии. Проведение пробы с дыханием кислородом сопровождается у некоторых больных увеличением КИ. Это обстоятельство в комплексе с другими симптомами можно рассматривать как проявление дыхательной недостаточности. Под влиянием физической нагрузки у здоровых детей КИ увеличивается, что является показателем хорошего использования вентилируемого воздуха. При скрытой дыхательной недостаточности отмечается уменьшение коэффициента использования кислорода уже при умеренной физической нагрузке, при явной – в покое.


Пробы с задержкой дыхания на вдохе (Штанге) и на выдохе (Генча) просты и доступны. Широко применяются для оценки функционального состояния дыхательной и сердечно- сосудистой системы. Исследование проводится в положении сидя после отдыха в течение 5- 7 минут, желательно натощак. Проба Штанге. Ребенку предлагают сделать 3 глубоких вдоха и выдоха, на высоте четвертого вдоха задержать дыхание, зажав нос пальцами. На секундомере отмечают время от момента окончания глубокого вдоха до возобновления дыхания. Длительность задержки дыхания на вдохе у здоровых детей 6-18 лет колеблется в пределах секунд. Проба Генча. Ребенку предлагают сделать 3 глубоких вдоха и выдоха и после третьего выдоха задержать дыхание, зажав нос пальцами. Секундомером регистрируется время от окончания третьего выдоха до возобновления дыхания. У здоровых людей школьного возраста это время равно секундам. Комбинированная проба с задержкой дыхания (проба А.Ф. Серкина) 1-я фаза. Определяется время, в течение которого обследуемый может задержать дыхание на вдохе в положении сидя. 2-я фаза. Определяется время задержки дыхания на фазе вдоха непосредственно после двадцати приседаний, выполненных в течение 30 секунд. 3-я фаза. Через минуту повторяется 1 фаза. Клиническое значение. Длительности задержки дыхания на вдохе и выдохе обычно уменьшается при заболеваниях сердечно-сосудистой и дыхательной системы. Зависит от многих факторов: возбудимости дыхательного центра, интенсивности тканевого обмена, волевых качеств, дисциплинированности ребенка и др. Реакция аппарата внешнего дыхания на физическую нагрузку. Функциональные пробы с физической нагрузкой применяются с целью оценки резервных возможностей системы внешнего дыхания и для выявления скрытой дыхательной недостаточности. В качестве физической нагрузки применяют бег на месте, восхождение по лестнице, глубокие приседания, работу на велоэргометре и т.п. Широкое распространение в медицинской практике получила «дифференцированная функциональная проба». При благоприятной реакции на нагрузку минутный объем дыхания возрастает преимущественно за счет углубления дыхания. Жизненная емкость легких остается неизменной или несколько повышается. Все показатели возвращаются к исходному уровню через 3-5 минут. При наличии у ребенка дыхательной недостаточности наблюдается неблагоприятная реакция: после физической нагрузки происходит увеличение минутного объема дыхания преимущественно за счет его учащения. Жизненная емкость легких нередко уменьшается. Дыхательный эквивалент возрастает. Восстановительный период обычно удлинен. Системы внешнего дыхания и кровообращения выполняют в организме единую функцию – обеспечивают тканевое дыхание, что обуславливает из взаимосвязь и взаимозависимость. Поэтом исследование сердечно-сосудистой и дыхательной системы должно быть комплексным, особенно при проведении нагрузочных функциональных проб.


1. Химическая природа кислорода и углекислого газа Кислород Роль кислорода в природе и его применение в технике Оксид углерода (IV). 2. Участие кислорода и углекислого газа в обмене газов в организме человека Парциальное давление кислорода и углекислого газа Гемоглобин Разновидности гемоглобина у человека. 3. Гипоксия. Влияние гипоксии на функциональное состояние человека. 4. Методы исследования функции внешнего дыхания. Функциональные пробы. 5. Изучение состояния внешнего дыхания у школьников с различной степенью физической подготовки. Конец >> Конец >> > Конец >>">



В исследованиях принимали участие школьники, не занимающиеся спортом и школьники- спортсмены в возрасте лет. Общее количество обследованных – 40 человек. Для определения показателей внешнего дыхания у обследуемых измерялась частота дыхания, дыхательный объем, жизненная емкость легких. Проводились следующие функциональные пробы: Штанге и Генча. Результаты исследования показателей внешнего дыхания представлены в таблице. Как следует из полученных данных, показатели внешнего дыхания имеют наиболее высокие значения у школьников, занимающихся спортом. Так, дыхательный объем у спортсменов выше на 33%, а жизненная емкость легких на 27%. Контингент обследуемыхЧастота дыхания Дыхательный объем, лЖизненная емкость легких, л Школьники нетренированные15 ± 1,30,24 ± 0,192,2 ± 0,56 Школьники-спортсмены17 ± 0,980,32 ± 0,182,8 ± 0,46 Результаты проведенных проб Штанге и Генча отображены на диаграмме. Как следует из представленной диаграммы, время от момента окончания глубокого вдоха до возобновления дыхания достоверно выше у школьников-спортсменов почти на 50%. Такая же картина наблюдается и при рассмотрении результатов, полученных при проведении пробы Генча. Время от окончания выдоха до возобновления дыхания достоверно выше на 38%.


1. Химическая природа кислорода и углекислого газа Кислород Роль кислорода в природе и его применение в технике Оксид углерода (IV). 2. Участие кислорода и углекислого газа в обмене газов в организме человека Парциальное давление кислорода и углекислого газа Гемоглобин Разновидности гемоглобина у человека. 3. Гипоксия. Влияние гипоксии на функциональное состояние человека. 4. Методы исследования функции внешнего дыхания. Функциональные пробы. 5. Изучение состояния внешнего дыхания у школьников с различной степенью физической подготовки. Конец >> Конец >> > Конец >>">


1. Все энергетические превращения в организме осуществляются при участии кислорода. В первую очередь на дефицит кислорода реагируют системы дыхания и кровообращения, обеспечивая рациональное перераспределения крови. 2. Состояния, при которых уменьшается количество кислорода в крови человека (в частности гипоксия) представляют собой патологические изменения в клетках и тканях организма. Причины, определяющие развитие кислородного голодания, различны, поэтому и сами гипоксические состояния по физиологическому механизму развития неоднородны. 3. Исследование дыхательных параметров (объема и частоты дыхания) позволяют объективно оценивать характер легочной вентиляции. Было отмечено, что глубокое и редкое дыхание создает лучшие условия для легочного газообмена. 4. В результате проведенного исследования было выявлено, что показатели внешнего дыхания у школьников-спортсменов значительно выше, чем у их сверстников, не занимающихся спортом.


1. Понятие круговорота

Между литосферой, гидросферой, атмосферой и живыми организмами Земли постоянно происходит обмен химическими элементами. Этот процесс имеет циклический характер: переместившись из одной сферы в другую, элементы вновь возвращаются в первоначальное состояние. Круговорот элементов имел место в течение всей истории Земли, насчитывающей 4,5 млрд. лет.

Круговорот веществ — многократно повторяющийся процесс совместного, взаимосвязанного превращения и перемещения веществ в природе, имеющий более или менее цикличный характер. Общий круговорот веществ характерен для всех геосфер и складывается из отдельных процессов круговорота химических элементов, воды, газов и других веществ. Процессы круговорота не полностью обратимы из-за рассеивания веществ, изменения его состава, местной концентрации и деконцентрации.

Для обоснования и пояснения самого понятия круговорота полезно обратиться к четырем важнейшим положениям геохимии, которые имеют первостепенное прикладное значение и подтверждены бесспорными опытными данными:

а) повсеместное распространение химических элементов во всех геосферах;

б) непрерывная миграция (перемещение) элементов во времени и в пространстве;

в) многообразие видов и форм существования элементов в природе;

г) преобладание рассеянного состояния элементов над концентрированным, особенно для рудообразующих элементов.

Более всего, на мой взгляд, стоит остановить свое внимание на процессе перемещения химических элементов.

Миграция химических элементов находит отражение в гигантских тектоно-магамтических процессах, преобразующих земную кору, и в тончайших химических реакциях, протекающих в живом веществе, в непрерывном поступательном развитии окружающего мира, характеризуя движение как форму существования материи. Миграция химических элементов определяется многочисленными внешними факторами, в частности, энергией солнечного излучения, внутренней энергией Земли, действием силы тяжести и внутренними факторами, зависящими от свойств самих элементов.

Круговороты могут происходить на ограниченном пространстве и на протяжении небольших отрезков времени, а может охватывать всю наружную часть планеты и огромные периоды. При этом малые круговороты входят в более крупные, которые в своей совокупности складываются в колоссальные биогеохимические круговороты. Они тесно связаны с окружающей средой.

Гигантские массы химических веществ переносятся водами Мирового океана. В первую очередь это относится к растворенным газам — диоксиду углерода, кислороду, азоту. Холодная вода высоких широт растворяет газы атмосферы. Поступая с океаническими течениями в тропический пояс, она их выделяет, так как растворимость газов при нагревании уменьшается. Поглощение и выделение газов происходит также при смене теплых и холодных сезонов года.

Огромное влияние на природные циклы некоторых элементов оказало появление жизни на планете. Это, в первую очередь, относится к круговороту главных элементов органического вещества — углерода, водорода и кислорода, а также таких жизненно важных элементов как азот, сера и фосфор. Живые организмы оказывают влияние и на круговорот многих металлических элементов. Несмотря на то, что суммарная масса живых организмов Земли меньше массы земной коры в миллионы раз, растения и животные играют важнейшую роль в перемещении химических элементов. Существует закон глобального замыкания биогеохимического круговорота в биосфере, действующий на всех этапах её развития, как и правило увеличения замкнутости биогеохимического круговорота в ходе сукцессии (сукцессия (от лат. succesio – преемственность) — последовательная смена экосистем, преемственно возникающих на определенном участке земной поверхности. Обычно сукцессия происходит под влиянием процессов внутреннего развития сообществ, их взаимодействия с окружающей средой. Длительность сукцессии составляет от десятков до миллионов лет). В процессе эволюции биосферы увеличивается роль биологического компонента в замыкании биогеохимического круговорота.

Деятельность человека также оказывает влияние на круговорот элементов. Особенно заметным оно стало в последнее столетие. При рассмотрении химических аспектов глобальных изменений в круговоротах химических элементов следует учитывать не только изменения в природных круговоротах за счет добавления или удаления присутствующих в них химических веществ в результате обычных циклических и/или вызванных человеком воздействий, но и поступление в окружающую среду химических веществ, ранее не существовавших в природе.

Круговороты элементов и веществ осуществляются за счёт саморегулирующих процессов, в которых участвуют все составные части экосистем. Эти процессы являются безотходными. В природе нет ничего бесполезного или вредного, даже от вулканических извержений есть польза, так как с вулканическими газами в воздух поступают нужные элементы, например, азот, сера.

Различают два основных круговорота: большой (геологический) и малый (биотический).

Большой круговорот, продолжающийся миллионы лет, заключается в том, что горные породы подвергаются разрушению, а продукты выветривания (в том числе растворимые в воде питательные вещества) сносятся потоками воды в Мировой океан, где они образуют морские напластования и лишь частично возвращаются на сушу с осадками. Геотектонические изменения, процессы опускания материков и поднятия морского дна, перемещения морей и океанов в течение длительного времени приводят к тому, что эти напластования возвращаются на сушу и процесс начинается вновь.

Малый круговорот, являясь частью большого, происходит на уровне экосистемы и состоит в том, что питательные вещества, вода и углерод аккумулируются в веществе растений, расходуются на построение тела и на жизненные процессы как самих растений, так и других организмов (как правило, животных), которые поедают их. Продукты распада органического вещества под действием деструкторов и микроорганизмов (бактерии, грибы, черви) вновь разлагаются до минеральных компонентов, доступных растениям и вовлекаемых ими в потоки вещества.

Таким образом, круговорот химических веществ из неорганической среды через растительные и животные организмы обратно в неорганическую среду с использованием солнечной энергии и энергии химических реакций называется биогеохимическим циклом. В такие циклы вовлечены практически все химические элементы и прежде всего те, которые участвуют в построении живой клетки.

2. Круговорот кислорода в природе

2.1 Общие сведения о кислороде-элементе

История открытия. Официально считается, что кислород был открыт английским химиком Джозефом Пристли 1 августа 1774 путём разложения оксида ртути в герметично закрытом сосуде (Пристли направлял на это соединение солнечные лучи с помощью мощной линзы):

2HgO (t)→ 2Hg + O2

Однако, Пристли первоначально не понял, что открыл новое простое вещество. Он считал, что выделил одну из составных частей воздуха (и назвал этот газ «дефлогистированным воздухом»). О своём открытии Пристли сообщил выдающемуся французскому химику Антуану Лавуазье.

Несколькими годами ранее (возможно, в 1770-м) кислород получил шведский химик Карл Шееле. Он прокаливал селитру с серной кислотой и затем разлагал получившийся оксид азота. Шееле назвал этот газ «огненным воздухом» и описал своё открытие в изданной в 1777 году книге (именно потому, что книга опубликована позже, чем сообщил о своём открытии Пристли, последний и считается первооткрывателем кислорода). Шееле также сообщил о своём опыте Лавуазье.

Важным этапом, который способствовал открытию кислорода, были работы французского химика Петра Байена, который опубликовал работы по окислению ртути и последующему разложению её оксида.

Наконец, окончательно разобрался в природе полученного газа Антуан Лавуазье, воспользовавшийся информацией от Пристли и Шееле. Его работа имела громадное значение, потому что благодаря ей была ниспровергнута господствовавшая в то время и тормозившая развитие химии флогистонная теория (флогисто́н (от греч. phlogistos — горючий, воспламеняемый) — гипотетическая «огненная субстанция», якобы наполняющая все горючие вещества и высвобождающаяся из них при горении). Лавуазье провел опыт по сжиганию различных веществ и опроверг теорию флогистона, опубликовав результаты по весу сожженных элементов. Вес золы превышал первоначальный вес элемента, что дало Лавуазье право утверждать, что при горении происходит химическая реакция (окисление) вещества, в связи с этим масса исходного вещества увеличивается, что опровергает теории флогистона.

Таким образом, заслугу открытия кислорода фактически делят между собой Пристли, Шееле и Лавуазье.

Происхождение названия. Название oxygenium («кислород») происходит от греческих слов, обозначающих «рождающий кислоту»; это связано с первоначальным значением термина «кислота». Ранее этим термином называли оксиды.

Нахождение в природе. Кислород — самый распространенный на Земле элемент, на его долю (в составе различных соединений, главным образом силикатов), приходится около 47,4 % массы твердой земной коры. Морские и пресные воды содержат огромное количество связанного кислорода — 88,8 % (по массе), в атмосфере содержание свободного кислорода составляет 20,95 % (по объему). Элемент кислород входит в состав более 1500 соединений земной коры.

Физические свойства. При нормальных условиях плотность газа кислорода 1,42897 г/л. Температура кипения жидкого кислорода (жидкость имеет голубой цвет) -182,9 °C. В твердом состоянии кислород существует по крайней мере в трех кристаллических модификациях. При 20°C растворимость газа О2: 3,1 мл на 100 мл воды, 22 мл на 100 мл этанола, 23,1 мл на 100 мл ацетона. Существуют органические фторсодержащие жидкости (например, перфторбутилтетрагидрофуран), в которых растворимость кислорода значительно более высокая.

Химические свойства элемента определяются его электронной конфигурацией: 2s22p4. Высокая прочность химической связи между атомами в молекуле О2 приводит к тому, что при комнатной температуре газообразный кислород химически довольно малоактивен. В природе он медленно вступает в превращения при процессах гниения. Кроме того, кислород при комнатной температуре способен реагировать с гемоглобином крови (точнее с железом (II) гема (гем — производное порфирина, содержащего в центре молекулы атом двухвалентного железа), что обеспечивает перенос кислорода от органов дыхания к другим органам.

Со многими веществами кислород вступает во взаимодействие без нагревания, например, с щелочными и щёлочноземельными, вызывает образование ржавчины на поверхности стальных изделий. Без нагревания кислород реагирует с белым фосфором, с некоторыми альдегидами и другими органическими веществами.

При нагревании, даже небольшом, химическая активность кислорода резко возрастает. При поджигании он реагирует со взрывом с водородом, метаном, другими горючими газами, с большим числом простых и сложных веществ. Известно, что при нагревании в атмосфере кислорода или на воздухе многие простые и сложные вещества сгорают, причем образуются различные оксиды, пероксиды и супероксиды, такие как SO2, Fe2 O3, Н2 О2, ВаО2, КО2.

Если смесь кислорода и водорода хранить в стеклянном сосуде при комнатной температуре, то экзотермическая реакция образования воды

2Н2 + О2 = 2Н2 О + 571 кДж

протекает крайне медленно; по расчету, первые капельки воды должны появиться в сосуде примерно через миллион лет. Но при внесении в сосуд со смесью этих газов платины или палладия (играющих роль катализатора), а также при поджигании реакция протекает со взрывом.

С азотом N2 кислород реагирует или при высокой температуре (около 1500-2000 °C), или при пропускании через смесь азота и кислорода электрического разряда. При этих условиях обратимо образуется оксид азота (II):

Возникший NO затем реагирует с кислородом с образованием бурого газа (диоксида азота):

2NO + О2 = 2NO2

Из неметаллов кислород напрямую ни при каких условиях не взаимодействует с галогенами, из металлов — с серебром, золотом, платиной и металлами платиновой группы.

С самым активным неметаллом фтором кислород образует соединения в положительных степенях окисления. Так, в соединении O2 F2 степень окисления кислорода +1, а в соединении O2 F — +2. Эти соединения принадлежат не к оксидам, а к фторидам. Фториды кислорода можно синтезировать только косвенным путем, например, действуя фтором F2 на разбавленные водные растворы КОН.

Применение. Применение кислорода очень разнообразно. Основные количества получаемого из воздуха кислорода используются в металлургии. Кислородное (а не воздушное) дутьё в домнах позволяет существенно повышать скорость доменного процесса, экономить кокс и получать чугун лучшего качества. Кислородное дутьё применяют в кислородных конвертерах при переделе чугуна в сталь. Чистый кислород или воздух, обогащённый кислородом, используется при получении и многих других металлов (меди, никеля, свинца и др.). Кислород используют при резке и сварке металлов. При этом применяют сжатый газообразный кислород, хранимый под давлением 15 МПа в специальных стальных баллонах. Баллоны с кислородом окрашены в голубой цвет для отличия от баллонов с другими газами.

Жидкий кислород - мощный окислитель, его используют как компонент ракетного топлива. Смесь жидкого кислорода и жидкого озона один из самых мощных окислителей ракетного топлива. Пропитанные жидким кислородом такие легко окисляющиеся материалы, как древесные опилки, вата, угольный порошок и др. (эти смеси называют оксиликвитами), используют как взрывчатые вещества, применяемые, например, при прокладке дорог в горах.

круговорот кислород химический элемент

2.2 Круговорот кислорода

Кислород является наиболее распространенным элементом на Земле. В морской воде содержится 88,8% кислорода, в атмосферном воздухе 23,15% по весу или 20,95% по объему, а в земной коре 47,4% по весу.

Указанная концентрация кислорода в атмосфере поддерживается постоянной благодаря процессу фотосинтеза (рис. 1). В этом процессе зеленые растения под действием солнечного света превращают диоксид углерода и воду в углеводы и кислород:

6CO2 + 6H2 O + энергия света = C6 H12 O6 + 6O2

Выше приведено суммарное уравнение фотосинтеза; на самом же деле, кислород выделяется в атмосферу на первой его стадии – в процессе фотолиза воды.

Наряду с этим, мощным источником кислорода является, по-видимому, фотохимическое разложение водяного пара в верхних слоях атмосферы под влиянием ультрафиолетовых лучей солнца.

Рис.1. Условная схема фотосинтеза.

Кислород — основной биогенный элемент, входящий в состав молекул всех важнейших веществ, обеспечивающих структуру и функции клеток — белков, нуклеиновых кислот, углеводов, липидов, а также множества низкомолекулярных соединений. В каждом растении или животном кислорода гораздо больше, чем любого другого элемента (в среднем около 70%). Мышечная ткань человека содержит 16% кислорода, костная ткань — 28,5%; всего в организме среднего человека (масса тела 70 кг) содержится 43 кг кислорода. В организм животных и человека кислород поступает в основном через органы дыхания (свободный кислород) и с водой (связанный кислород). Потребность организма в кислороде определяется уровнем (интенсивностью) обмена веществ, который зависит от массы и поверхности тела, возраста, пола, характера питания, внешних условий и др. В экологии как важную энергетическую характеристику определяют отношение суммарного дыхания (то есть суммарных окислительных процессов) сообщества организмов к его суммарной биомассе.

В жизни природы кислород имеет исключительное значение. Кислород и его соединения незаменимы для поддержания жизни. Они играют важнейшую роль в процессах обмена веществ и дыхании. Большинство организмов получают энергию, необходимую для выполнения их жизненных функций, за счет окисления тех или иных веществ с помощью кислорода. Убыль кислорода в атмосфере в результате процессов дыхания, гниения и горения возмещается кислородом, выделяющимся при фотосинтезе.

Незначительное количество атмосферного кислорода участвует в цикле образования и разрушения озона при сильном ультрафиолетовом излучении:

O2 * + O2 → O3 + O

Большая часть кислорода, вырабатываемого в течение геологических эпох, не оставалась в атмосфере, а фиксировалась литосферой в виде карбонатов, сульфатов, оксидов железа и др.

Геохимический круговорот кислорода связывает газовую и жидкую оболочки с земной корой. Его основные моменты: выделение свободного кислорода при фотосинтезе, окисление химических элементов, поступление предельно окисленных соединений в глубокие зоны земной коры и их частичное восстановление, в том числе за счет соединений углерода, вынос оксида углерода и воды на поверхность земной коры и вовлечение их в реакцию фотосинтеза. Схема круговорота кислорода в несвязанном виде представлена ниже.

Рис.2. Схема круговорота кислорода в природе.

Кроме описанного выше круговорота кислорода в несвязанном виде, этот элемент совершает еще и важнейший круговорот, входя в состав воды (рис. 3). В процессе круговорота вода испаряется с поверхности океана, водяные пары перемещаются вместе с воздушными течениями, конденсируются, и вода возвращается в виде атмосферных осадков на поверхность суши и моря. Различают большой круговорот воды, при котором вода, выпавшая в виде осадков на сушу, возвращается в моря путем поверхностного и подземного стоков; и малый круговорот воды, при котором осадки выпадают на поверхность океана.

Из приведенных примеров круговоротов и миграции элемента видно, что глобальная система циклической миграции химических элементов обладает высокой способностью к саморегуляции, при этом огромную роль в круговороте химических элементов играет биосфера.

Кислород является самым распространенным элементом земной коры. В атмосфере его находится около 23% (масс.), в составе воды – около 89%, в человеческом организме – около 65%, в песке содержится 53% кислорода, в глине – 56% и т.д. Если подсчитать его количество в воздухе (атмосфере), воде (гидросфере) и доступной непосредственному химическому исследованию части твердой земной коры (литосфере), то окажется, что на долю кислорода приходится примерно 50% их общей массы.

Круговорот кислорода в природе. Применение кислорода, его биологическая роль

Свободный кислород содержится почти исключительно в атмосфере, причем количество его оценивается в т. При всей громадности этой величины она не превышает 0,0001 общего содержания кислорода в земной коре.
В связанном состоянии кислород входит в состав почти всех окружающих нас веществ.

Так, например, вода, песок, многие горные породы и минералы, встречающиеся в земной коре, содержат кислород. Кислород является составной частью многих органических соединений, например белков, жиров и углеводов, имеющих исключительно большое значение в жизни растений, животных и человека.
Круговорот кислорода в природе – это процесс обмена кислородом, который происходит между атмосферой, гидросферой и литосферой. Основным источником возобновления кислорода на Земле служит фотосинтез – процесс, происходящий в растениях за счет поглощения ими углекислого газа.

Растворенный в воде кислород поглощается водными формами жизни посредством дыхания.

Круговорот кислорода – планетарный процесс, связывающий атмосферу, гидро- и литосферу через совокупную деятельность живых организмов.

Основные этапы круговорота˸

1) производство кислорода при фотосинтезе фотоавтотрофами суши и океана;

2) производство кислорода при диссоциации Н2О и О3 в верхних слоях атмосферы под действием ионизирующего и ультрофиолетового излучения (незначительное количество);

3) потребление О2 при дыхании живых организмов;

4) потребление кислорода при почвенном дыхании (окислении органики почвенными микроорганизмами);

5) потребление О2 при горении и других формах окисления (извержение вулканов);

6) потребление кислорода на производство О3 в стратосфере;

7) участие в океанических преобразованиях гидрокарбонатов в составе СО2 и Н2О˸

Весь О2 полностью проходит через живые организмы за 2 000 лет.

Ежегодное производство кислорода фотосинтетиками Земли примерно 240 млрд. т. В океане кислорода в растворенном виде так же, как и СО2 гораздо больше, чем в атмосфере (от 2 до 8 г/л). Часть органического вещества захороняется, поэтому часть кислорода выводится из цикла.

Биосферных проблем, связанных с циркуляцией кислорода в атмосфере, несколько˸

1) при сжигании ископаемого топлива тратится огромное количество кислорода.

Совокупное годовое потребление на Земле кислорода 230 млрд. т, из низ на дыхание растений и животных идет 2,6 млрд. т, почвенное окисление – 50 млрд. т, остальное – процессы горения. С учетом быстрого сведения лесов на планете и возрастающими темпами индустриализации закономерно˸ в будущем дальнейшее возрастание потребления и снижение производство О2.

2) в результате человеческой деятельности в атмосферу попадают сотни веществ, многие из которых являются парниковыми газами и разрушителями озонового слоя стратосферы, Например, озоновый слой разрушается при попадании в атмосферу хлора и азота.

В стратосфере под действием жесткого ионизирующего излучения (менее 242 нм) молекулы О2 распадаются на атомы, которые соединяются с молекулами О2 и образуют озон (О3).

В результате, образуется слой, непроницаемый для ультрафиолета А (< 280 нм), В (280 < <315 нм) и задерживающий большую часть ультрафиолета С (315 < 400 нм).

При поглощении озоном квантов УФ-излучения выделяется тепловая энергия, за счёт которой и разогревается стратосфера.

Толщина озонового слоя измеряется в единицах Добсона (100 Д.е = 0,1 см при нормальном атмосферном давлении).

У полюсов озона больше (301,6 Д.е.), чем у экватора, зато толщина тропосферы больше у экватора. Концентрация озона и продолжительность ᴇᴦο жизни различна на разных высотах, меняется от времени суток, сезона. На каждой высоте имеются свои источники озона и свои стоки, обмен озоновыми массами идет также между различными широтами. В целом оценка содержания циркуляции озона в атмосфере – очень трудоемкий процесс с примерными фактическими результатами.

Читайте также

  • — Круговорот кислорода

    В отличие от углерода, резервуары доступного для биоты кислорода по сравнению с егопотоками огромны.

    Поэтому отпадает проблема глобального дефицита О2 и замкнутости его круговорота. Биотический круговорот кислорода составляет 270 Гт/год. Кислород на Земле - первый по… [читать подробнее].

  • — Круговорот кислорода

    26). Кроме того,…

    Опишите ПОДРОБНО круговорот кислорода в природе.

  • — Круговорот кислорода

    Не всегда входил в состав земной атмосферы. Он появился в результате жизнедеятельности фотосинтезирующих организмов и под действием ультрафиолетовых лучей превращался в озон.

    По мере накопления озона произошло образование озонового слоя в верхних слоях атмосферы. … [читать подробнее].

  • — Круговорот кислорода

    Кислород атмосферы имеет биогенное происхождение и его циркуляция кислорода в биосфере осуществляется путем пополнения запасов в атмосфере в результате фотосинтеза растений и поглощения при дыхании организмов и сжигании топлива в хозяйстве человека (рис.

  • — КРУГОВОРОТ КИСЛОРОДА

    Кислород, самый распространенный элемент, без которого не-возможна жизнь на Земле. Он составляет 47,2% от массы земной ко-ры в виде оксидов металлов и неметаллов.

  • — Биогеохимические круговороты: круговорот кислорода, углерода, азота, фосфора, серы и воды.

    Круговорот кислорода: Кислород играет важнейшую роль в жизни большинства живых организмов на нашей планете. Он необходим всем для дыхания. Кислород не всегда входил в состав земной атмосферы. Он появился в результате жизнедеятельности фотосинтезирующих организмов.

  • Примерно четвертая часть атомов всей живой материи приходится на долю кислорода. Поскольку общее количество атомов кислорода в природе неизменно, с удалением кислорода из воздуха вследствие дыхания и других процессов должно происходить его пополнения. Важнейшими источниками кислорода в неживой природе является углекислый газ и вода. Кислород попадает в атмосферу главным образом в результате процесса фотосинтеза, в котором участвует CО2.

    Важным источником кислорода является атмосфера Земли.

    Часть кислорода образуется в верхних частях атмосферы вследствие диссоциации воды под действием солнечного излучения. Часть кислорода выделяется зелеными растениями в процессе фотосинтеза с H2O и CO2.

    В свою очередь атмосферное CО2 образуется в результате реакций горения и дыхания животных. Атмосферное О2 расходуется на образование озона в верхних частях атмосферы, окислительные процессы выветривания горных пород, в процессе дыхания животных и в реакциях горения.

    Преобразование V2 в CО2 приводит к выделению энергии, соответственно, на превращение CО2 в О2 энергия должна расходоваться.

    Особенности кругооборота воды и некоторых веществ в биосфере

    Эта энергия оказывается Солнцем. Таким образом, жизнь на Земле зависит от циклических химических процессов, возможных благодаря попаданию солнечной энергии.

    Применение кислорода обусловлено его химическими свойствами. Кислород широко используется как окислитель. Его применяют для сварки и резки металлов, в химической промышленности - для получения различных соединений и интенсификации некоторых производственных процессов.

    В космической технике кислород применяется для сжигания водорода и других видов топлива, в авиации - при полетах на больших высотах, в хирургии - для поддержания больных с затрудненным дыханием.

    Биологическая роль кислорода обусловлено его способностью поддерживать дыхание.

    Человек при дыхании в течение одной минуты в среднем потребляет 0,5 дм3 кислорода, в течение суток - 720 дм3, а в течение года - 262,8 м3 кислорода.

    Круговорот кислорода в природе

    Задания «С» ЕГЭ_ 2007 г. – С 4

    В чем выражается приспособленность цветковых растений к совместному проживанию в лесном сообществе? Укажите не менее 3-х примеров.

    1) ярусное расположение, обеспечивающее использование растениями света;

    2) неодновременное цветение ветроопыляемых и насекомоопыляемых растений;

    Назовите не менее 3-х отличий в строении клеток прокариот и эукариот.

    1) ядерное вещество не отделено от цитоплазмы оболочкой;

    2) одна кольцевая молекула ДНК – нуклеоид;

    3) отсутствует большинство органоидов, кроме рибосом.

    К каким изменениям в экосистеме луга может привести сокращение численности насекомых-опылителей?

    1) сокращению численности насекомоопыляемых растений, изменению видового состава растений;

    2) сокращению численности и изменению видового состава растительноядных животных;

    3) сокращению численности насекомоядных животных.

    К каким последствиям могут привести различные виды антропогенного воздействия на окружающую среду?

    Приведите не менее 4-х последствий.

    1) сжигание топлива приводит к накоплению в атмосфере СО 2 и парниковому эффекту;

    2) работа промышленных предприятий способствует загрязнению окружающей среды твердыми отходами (пылевые частицы), газообразными продуктами (оксидами азота и др.), что вызывает кислотные дожди;

    3) использование фреонов приводит к образованию озоновых дыр и проникновению ультрафиолетовых лучей, губительно влияющих на всё живое;

    4) вырубка лесов, осушение болот, распашка целинных земель приводят к опустыниванию.

    В последние годы благодаря достижениям биотехнологии появился новый источник пищи – белок, получаемый из микроорганизмов.

    Какие преимущества имеет использование микроорганизмов для производства белка по сравнению с традиционным использованием для этой цели сельскохозяйственных растений и животных?

    1) не требуется больших площадей для посевов и помещений для скота, что снижает энергозатраты;

    2) микроорганизмы выращивают на дешевых или побочных продуктах сельского хозяйства или промышленности;

    3) с помощью микроорганизмов можно получить белки с заданными свойствами (например, кормовые белки).

    Современные кистеперые рыбы находятся в состоянии биологического регресса.

    Приведите данные, подтверждающие это явление.

    1) невысокая численность вида: в настоящее время известен только один вид этих рыб – латимерия;

    2) небольшая площадь ареала: латимерия имеет ограниченное распространение в участке Индийского океана;

    3) латимерия приспособлена к жизни только на определённой глубине, т.е.

    она – узко специализированный вид.

    Приведите не менее 3-х изменений в экосистеме смешанного леса, к которым может привести сокращение численности насекомоядных птиц.

    1) увеличение численности насекомых;

    2) сокращение численности растений, поедаемых и повреждаемых насекомыми;

    3) сокращение численности хищных животных, питающихся насекомоядными птицами.

    Биологический прогресс млекопитающих сопровождался появлением множества частных приспособлений – идиоадаптаций.

    Приведите не менее 3-х идиоадаптаций во внешнем строении, которые позволяют кротам успешно вести подземно-роющий образ жизни. Ответ поясните.

    1) приспособленные для рытья лопатообразные передние конечности; 2) отсутствие ушных раковин;

    3) короткий шерстный покров не препятствует передвижению в почве.

    Объясните, какие особенности передних конечностей приматов способствовали развитию руки для орудийной деятельности при антропогенезе.

    1) передняя конечность хватательного типа, противопоставление большого пальца;

    2) наличие ногтей: кончики пальцев открыты и имеют большую осязательную чувствительность;

    3) наличие ключицы, обеспечивающей разнообразие движений передней конечности.

    Какие ароморфозы позволили млекопитающим широко распространиться на Земле?

    1) теплокровность, обусловленная 4-х камерным сердцем, альвеолярными лёгкими, волосяным покровом;

    2) внутриутробное развитие, выкармливание детенышей молоком;

    3) высокий уровень организации центральной нервной системы, сложные формы поведения.

    Для борьбы с вредителями сельского и лесного хозяйства используют различные методы.

    Приведите не менее 3-х преимуществ применения биологических методов перед химическими.

    1) биологические методы безвредны и экологически безопасны, так как основаны на привлечении естественных врагов вредителей;

    2) химические препараты отравляют и полезных насекомых, загрязняют почву, усваиваются произрастающими на ней растениями, а, следовательно, и загрязняют возможные продукты питания человека; 3) применение биологических методов борьбы с вредителями способствует сохранению биологического разнообразия природы или регуляции одного вида вредителей.

    В природе осуществляется круговорот кислорода.

    Какую роль играют в этом процессе живые организмы?

    1) кислород образуется в растениях в процессе фотосинтеза и выделяется в атмосферу;

    2) в процессе дыхания кислород используется живыми организмами; 3) в клетках живых организмов кислород участвует в окислительно-восстановительных процессах энергетического обмена с образованием воды и углекислого газа.

    1) обитание в теле хозяина, защищенность от неблагоприятных условий, обеспеченность пищей, отсутствие врагов способствовали редукции некоторых систем органов и формированию сильно развитой половой системы;

    2) плотные покровы тела препятствуют его перевариванию, а органы прикрепления удерживают в теле хозяина;

    3) самооплодотворение, высокая плодовитость, сложный цикл развития позволяют ему широко расселяться.

    Какие признаки в строении тела являются общими только для человека и человекообразных обезьян?

    1) наличие ногтей вместо когтей;

    2) наличие копчика и отсутствие хвоста;

    3) одинаковая зубная система;

    4) сходная форма ушей, лицо без сплошного волосяного покрова.

    Влияние автотранспорта на человека и окружающую среду

    1.3.1 Понятие шума

    Шумом является всякий нежелательный для человека звук. При нормальных атмосферных условиях скорость звука в воздухе равна 344 м/с. Звуковое поле — это область пространства, в которой распространяются звуковые волны…

    Воздушная оболочка Земли

    9.

    Понятие о климате

    Климат — это многолетний режим погоды, характерный для данной местности. Климат оказывает влияние на режим рек, образование различных типов почв, растительность и животный мир. Так, в областях, где земная поверхность получает много тепла и влаги…

    Генетически модифицированные организмы и генетически модифицированные продукты

    1.

    Генетически модифицированный организм (ГМО) — организм, генотип которого был искусственно изменён при помощи методов генной инженерии. Это определение может применяться для растений, животных и микроорганизмов. Генетические изменения…

    Закономерности самоочищения воды в водных объектах

    1.1 Понятие об ОВОС

    Пока единственный действующий российский нормативный документ, регламентирующий оценку воздействия на окружающую среду (ОВОС) _ Положение «Об оценке воздействия на окружающую среду в Российской Федерации» (утв.

    Круговорот кислорода

    приказом Минприроды России от 18…

    Круговорот веществ и энергии в природе

    1.1 Круги круговорота веществ

    Солнечная энергия на Земле вызывает два круговорота веществ: · большой (геологический), наиболее ярко проявляющийся в круговороте воды и циркуляции атмосферы. · малый, биологический (биотический)…

    Круговорот фосфора

    2. Составьте схему круговорота и покажите перемещение фосфорсодержащих соединений

    Составьте пояснительный текст к схеме и дайте ответы на вопросы: 1.

    Какой фазы не существует в круговороте фосфора? 2. Где фосфор может накапливаться? 3…

    Лапландский государственный заповедник: экологическое состояние и мероприятия по оздоровлению

    7. Механизмы круговорота веществ

    Круговорот веществ в биогеоценозе — необходимое условие существования жизни.

    Он возник в процессе становления жизни и усложнялся в ходе эволюции живой природы. С другой стороны, чтобы в биогеоценозе был возможен круговорот веществ…

    Отношения организмов в агросистемах

    4. Особенности круговорота веществ в агроэкосистемах

    Массо- и энергообмен на планете включает разнообразные процессы вещественных и энергетических превращений и перемещений в литосфере, гидросфере, атмосфере.

    С появлением жизни эти круговороты и потоки интенсифицировались…

    Правовая охрана вод

    2.1.1. Понятие «водопользование»

    По отношению к многочисленным и разнообразным конкретным общественным отношениям, возникающим в процессе использования природных запасов воды, понятие «водопользование» выступает как одно собирательное, обобщающее понятие.

    Нужно отметить…

    Правовые основы лицензирования в области охраны окружающей среды

    1.1 Понятие лицензирования

    Лицензирование представляет собой процедуру выдачи тому или иному субъекту разрешительного документа на право занятия определенной деятельностью, в котором отражаются сроки и условия осуществления такой деятельности. Винокуров А.Ю…

    Проблема загрязнения атмосферы

    1.1 Понятие о геосферах

    Биосфера — живая оболочка планеты Земля Биосфера представляет собой совокупность тех слоёв Земли, которые на протяжении её геологической истории подвергались воздействию организмов.

    Изучая биосферу как особую оболочку земного шара…

    Решение проблемы депонирования углерода на государственном и межгосударственном уровнях

    Глава 2. Влияние круговорота углерода на глобальный климат

    Современный уровень нарушений экологических условий и равновесий на Земле

    Понятие природообустройство

    В настоящее время, когда человек на высоком уровне развития науки и производительных сил своей деятельностью коренным образом изменяет компоненты природы, появляется проблема сосуществования человека (человеческого общества) и природы…

    Человек как биологический и социальный организм природы

    2.

    Участие организмов в круговороте веществ и энергии. Проблема нарушения круговорота веществ в биосфере

    Главная функция биосферы заключается в обеспечении круговорота химических элементов, который выражается в циркуляции веществ между атмосферой, почвой, гидросферой и живыми организмами…

    Экологическая система

    3.

    Изобразите и обсудите модель биотического (биологического) круговорота веществ-биогенов с участием продуцентов, консументов, редуцентов. Поясните названия организмов и их роль в круговороте

    Рис. Модель биотического (биологического) круговорота веществ-биогенов с участием продуцентов, консументов, редуцентов. Биотический круговорот обеспечивается взаимодействием трех основных групп организмов: 1) продуцентов — зеленых растений…

    Доклад на тему «Применение кислорода» кратко изложенное в этой статье, расскажет Вам о сферах промышленности, в которых это невидимое вещество приносит невероятную пользу.

    Сообщение о применении кислорода

    Кислород является неотъемлемой частью жизнедеятельности всех живых организмов и химических процессов на планете. В этой статье мы рассмотрим наиболее частые области применения кислорода:

    Применение кислорода в медицине

    В данной области он чрезвычайно важен: химический элемент используется для жизненного поддержания людей, страдающих на затрудненное дыхание и для лечения некоторых недугов. Примечательно, что при нормальном давлении чистым кислородом дышать долго нельзя. Это небезопасно для здоровья.

    Применение кислорода в стекольной промышленности

    Данный химический элемент в стекловаренных печах используется в качестве компонента, улучшающего горение в них. Также благодаря кислороду промышленность уменьшает выбросы оксидов азота до уровня безопасных для жизни.

    Применение кислорода в целлюлозно–бумажной промышленности

    Данный химический элемент используется при спиртовании, делигнификации и в других процессах, таких как:

    1. Отбеливание бумаги
    2. Очистка сточных вод
    3. Подготовка питьевой воды
    4. Интенсификация горения мусоросжигательных печей
    5. Переработка покрышек

    Применение кислорода в авиации

    Поскольку человек не может дышать вне атмосферы без кислорода, то ему необходимо брать запас данного полезного элемента с собой. Искусственно полученный кислород используется людьми для дыхания в чуждой среде: в авиации при полетах, в космических аппаратах.

    Применение кислорода в природе

    В природе существует круговорот кислорода: в процессе фотосинтеза растения на свету превращают углекислый газ и воду в органические соединения. Данный процесс характеризуется выделением кислорода. Как человек и животные, растения в темное время суток потребляют кислород из атмосферы. Круговорот кислорода в природе определяется тем, что человек и животные потребляют кислород, а растения производят его днем и расходуют ночью.

    Применение кислорода в металлургии

    Для химической и металлургической промышленности нужен чистый кислород, а не атмосферный. В мире каждый год предприятия получают больше 80 млн. тонн данного химического элемента. Он израсходуется в процессе получения стали из металлолома и чугуна.

    Какое применение кислорода в машиностроении?

    В строительстве и машиностроении он используется для резки и сварки металлов. Данные процессы осуществляются при высоких температурах.

    Применение кислорода в жизни

    В жизни человек использует кислород в различных сферах, таких как:

    1. Выращивание рыбы в прудовых хозяйствах (вода насыщается кислородом).
    2. Обработка воды во время изготовления пищевых продуктов.
    3. Обеззараживание хранилищ и производственных помещений кислородом.
    4. Разработка кислородных коктейлей для животных, чтобы те прибавляли в весе.

    Применение кислорода человеком в электроэнергии

    Тепловые и электрические станции, которые работают на нефти, природном газе или угле, для сжигания топлива используют кислород. Без него все производственные промышленные заводы просто бы не работали.

    Надеемся, что сообщение на тему «Применение кислорода» помогло Вам подготовиться к занятию. А рассказ о применении кислорода Вы можете дополнить через форму комментариев ниже.

    «Кислородные соединения» - Кислородные соединения N (все оксиды азота эндотермичны!!!). Кислородные соединения N+5. Галогениды N. Связывание диазота N2. Кислородные соединения N+3. Термолиз солей аммония. Разложение нитратов при T. Кислородные соединения N+2. Открытие элементов. Нитриды. Свойства. Кислородные соединения N+4. Аналогично для Li2NH (имид), Li3N (нитрид).

    «Применение кислорода» - Применение кислорода. Больной находится в специальном аппарате в кислородной атмосфере при пониженном давлении. Врач беседует с больным по телефону. Пожарный с автономным дыхательным аппаратом. Вне земной атмосферы человек вынужден брать с собой запас кислорода. Главными потребителями кислорода являются энергетика, металлургия и химическая промышленность.

    «Кислород химия» - 1,4 г/л, немного тяжелее воздуха. Реакции горения. Температура плавления. Кислород в природе. Температура кипения. Агрегатное состояние, цвет, запах. Физические свойства кислорода. Плотность. Растворимость. Кислород. Реакции окисления, в которых выделяются теплота и свет, называются реакциями горения.

    «Тест «Воздух»» - Колличество климатических поясов. Ответьте письменно на вопросы. Ветер, меняющий направление два раза в год. Воздух. Единица измерения давления. Смесь разных жидкостей. Прибор для измерения атмосферного давления. Газ, не поддерживающий горения. Плотность воздуха. Обобщить и закрепить знания.

    «Воздух химия» - Озоновые дыры. Последствия загрязнения воздуха. Автомобильные выхлопы, выбросы промышленных предприятий. Парниковый эффект. Определить основные пути решения проблемы загрязнения воздуха. Переменные составные части воздуха. Основные пути решения проблемы загрязнения воздуха. Экологическое состояние в округах Москвы.

    «Кислород. Озон. Воздух» - Выполните тест. Выполните задание. М.В.Ломоносов. Аллотропия. Кислород. Решите проблему. Состав воздуха. Изучить состав воздуха. Биологическая роль. Озон и кислород. Получение кислорода. Свойства кислорода. А.Лавуазье. Обобщение. Применение кислорода. Выделение кислорода. Проверьте ваши ответы. Лабораторный опыт.

    Всего в теме 17 презентаций

    Описание презентации по отдельным слайдам:

    1 слайд

    Описание слайда:

    2 слайд

    Описание слайда:

    кислород КИСЛОРОД (лат. Oxygenium), O (читается «о»), химический элемент с атомным номером 8, атомная масса 15,9994. В периодической системе элементов Менделеева кислород расположен во втором периоде в группе VIA. Природный кислород состоит из смеси трех стабильных нуклидов с массовыми числами 16 (доминирует в смеси, его в ней 99,759 % по массе), 17 (0,037%) и 18 (0,204%). В свободном виде кислород -- газ без цвета, запаха и вкуса. Особенности строения молекулы О2: атмосферный кислород состоит из двухатомных молекул. Энергия диссоциации молекулы О2 на атомы довольно высока и составляет 493,57 кДж/моль.

    3 слайд

    Описание слайда:

    Химические свойства кислорода: Кислород - второй по электроотрицательности элемент после фтора, поэтому он проявляет сильные окислительные свойства. С большинством металлов он реагирует уже при комнатной температуре, образуя основные оксиды. С неметаллами (за исключением гелия, неона, аргона) кислород реагирует, как правило, при нагревании. Так, с фосфором он реагирует при температуре ~ 60 °С, образуя Р2О5, с серой - при температуре около 250 °С: S + О2 = SO2. С графитом кислород реагирует при 700 °С С + О2 = СО2. Взаимодействие кислорода с азотом начинается лишь при 1200°С или в электрическом разряде N2 + О2 2NО - Q. Кислород реагирует и со многими сложными соединениями, например с оксидом азота (II) он реагирует уже при комнатной температуре: 2NО + О2 = 2NО2.

    4 слайд

    Описание слайда:

    Сероводород, реагируя с кислородом при нагревании, дает серу 2Н2S + О2 = 2S + 2Н2О или оксид серы (IV) 2Н2S + ЗО2 = 2SО2 + 2Н2О в зависимости от соотношения между кислородом и сероводорододом. В приведенных реакциях кислород является окислителем.В большинстве реакций окисления с участием кислорода выделяется тепло и свет - такие процессы называются горением. Еще более сильным окислителем, чем кислород О2, является озон О3. Он образуется в атмосфере при грозовых разрядах, объясняется специфический запах свежести после грозы. Обычно озон получают пропусканием разряда через кислород (реакция эндотермическая и сильно обратимая; выход озона около 5%): ЗО2 <=>2О3 - 284 кДж. При взаимодействии озона с раствором иодида калия выделяется йод, тогда как с кислородом эта реакция не идет: 2КI + О3 + Н2О = I2 + 2КОН + О2. Реакция часто используется как качественная для обнаружения ионов I- или озона. Для этого в раствор добавляют крахмал, который дает характерный синий комплекс с выделившимся иодом. Реакция качественная еще и потому, что озон не окисляет ионы Сl- и Br-.

    5 слайд

    Описание слайда:

    6 слайд

    Описание слайда:

    Получение кислорода в промышленности кислород получают: фракционной перегонкой жидкого воздуха (азот, обладающий более низкой температурой кипения, испаряется, а жидкий кислород остается); электролизом воды. Ежегодно во всем мире получают свыше 80 млн. т кислорода. В лабораторных условиях кислород получают разложением ряда солей, оксидов и пероксидов: 2КМnО4 -> К2MnО4 + МnО2 + О2, 4К2Сr2О7 -> 4К2CrO4 + 2Сr2О3 + 3O2, 2КNО3 -> 2КNО2 + О2, 2Pb3О4 -> 6PbО + О2, 2НgО -> 2Нg + О2 , 2ВаО -> 2ВаО + О2, 2Н2O2 -> 2Н2О + О2. Особенно легко кислород выделяется в результате последней реакции, поскольку в пероксиде водорода Н2О2 не двойная, а одинарная связь между атомами кислорода -О-О-.

    7 слайд

    Описание слайда:

    Применение Основные количества получаемого из воздуха кислорода используются в металлургии. Кислородное (а не воздушное) дутье в домнах позволяет существенно повышать скорость доменного процесса, экономить кокс и получать чугун лучшего качества. Кислородное дутье применяют в кислородных конвертерах при переделе чугуна в сталь. Чистый кислород или воздух, обогащенный кислородом, используется при получении и многих других металлов (меди, никеля, свинца и др.). Кислород используют при резке и сварке металлов. находиться под давлением до 15 МПа. Баллоны с кислородом окрашены в голубой цвет. Жидкий кислород -- мощный окислитель, его используют как компонент ракетного топлива. Пропитанные жидким кислородом такие легко окисляющиеся материалы, как древесные опилки, вата, угольный порошок и др. (эти смеси называют оксиликвитами), используют как взрывчатые вещества, применяемые, например, при прокладке дорог в горах.

    8 слайд

    9 слайд

    Описание слайда:

    В каждом растении или животном кислорода гораздо больше, чем любого другого элемента (в среднем около 70%). Мышечная ткань человека содержит 16% кислорода, костная ткань -- 28.5%; всего в организме среднего человека (масса тела 70 кг) содержится 43 кг кислорода. В организм животных и человека кислород поступает в основном через органы дыхания (свободный кислород) и с водой (связанный кислород). Потребность организма в кислороде определяется уровнем (интенсивностью) обмена веществ, который зависит от массы и поверхности тела, возраста, пола, характера питания, внешних условий и др. В экологии как важную энергетическую характеристику определяют отношение суммарного дыхания (то есть суммарных окислительных процессов) сообщества организмов к его суммарной биомассе. Небольшие количества кислорода используют в медицине: кислородом (из так называемых кислородных подушек) дают некоторое время дышать больным, у которых затруднено дыхание. Нужно, однако, иметь в виду, что длительное вдыхание воздуха, обогащенного кислородом, опасно для здоровья человека. Высокие концентрации кислорода вызывают в тканях образование свободных радикалов, нарушающих структуру и функции биополимеров. Сходным действием на организм обладают и ионизирующие излучения. Поэтому понижение содержания кислорода (гипоксия) в тканях и клетках при облучении организма ионизирующей радиацией обладает защитным действием -- так называемый кислородный эффект.

    10 слайд

    Описание слайда:

    Распространение и формы кислорода в природе Кислород - наиболее распространенный элемент твердой земной коры, гидросферы, живых организмов. Его кларк в литосфере - 47 %, еще выше кларк в гидросфере - 82 % и живом веществе - 70 %. Известно свыше 1400 кислородосодержащих минералов, в которых его спутниками являются десятки элементов периодической системы. Кислород - циклический элемент классификации В. И. Вернадского, он участвует в многочисленных круговоротах различных масштабов - от небольших, в пределах конкретного ландшафта, до грандиозных, связывающих биосферу с очагами магматизма. На долю кислорода приходится приблизительно половина всей массы земной коры, 89 % массы мирового океана. В атмосфере кислород составляет 23 % массы и 21 % объема

    11 слайд

    Описание слайда:

    На земной поверхности зеленые растения в ходе фотосинтеза разлагают воду и выделяют свободный кислород (О2) в атмосферу. Как отмечал Вернадский, свободный кислород - самый могущественный деятель из всех известных химических тел земной коры. Поэтому в большинстве систем биосферы, например в почвах, грунтовых, речных и морских водах, кислород выступает настоящим геохимическим диктатором, определяет геохимическое своеобразие системы, развитие в ней окислительных реакций. За миллиарды лет геологической истории растения сделали атмосферу нашей планеты кислородной, воздух, которым мы дышим, сделан жизнью Количество реакций окисления, расходующих свободный кислород, огромно. В биосфере они в основном имеют биохимическую природу, т. е. Осуществляются бактериями, хотя известно чисто химическое окисление. В почвах, илах, реках, морях и океанах, горизонтах подземных вод - везде, где имеются органические вещества и вода, развивается деятельность микроорганизмов, окисляющих органические соединения.

    12 слайд

    Описание слайда:

    В большинстве природных вод, содержащих свободный кислород - сильный окислитель, существуют органические соединения - сильные восстановители. Поэтому все геохимические системы со свободным кислородом неравновесны и богаты свободной энергией. Неравновесность выражена тем резче, чем больше в системе живого вещества. Везде в биосфере, где воды, не содержащие свободный кислород (с восстановительной средой), встречают этот газ, возникает кислородный геохимический барьер, на котором концентрируются Fe, Mn, S и другие элементы с образованием руд этих элементов. Ранее господствовало заблуждение, что по мере углубления в толщу земной коры среда становится более восстановительной, однако это не полностью отвечает действительности. На земной поверхности, в ландшафте, может наблюдаться как резко окислительные, так и резко восстановительные условия. Окислительно-восстановительная зональность наблюдается в озерах - в верхней зоне развивается фотосинтез и наблюдается насыщение и перенасыщение кислородом. Но в глубоких частях озера, в илах происходит только разложение органических веществ. Ниже биосферы, в зоне метаморфизма, степень восстановленности среды часто уменьшается, как и в магматических очагах. Наиболее восстановительные условия в биосфере возникают на участках энергичного разложения органических веществ, а не на максимальных глубинах. Такие участки характерны и для земной поверхности, и для водоносных горизонтов.

    13 слайд

    Описание слайда:

    Круговорот кислорода Кислород является наиболее распространенным элементом на Земле. В морской воде содержится 85,82% кислорода, в атмосферном воздухе 23,15% по весу или 20,93% по объему, а в земной коре 47,2% по весу. Такая концентрация кислорода в атмосфере поддерживается постоянной благодаря процессу фотосинтеза. В этом процессе зеленые растения под действием солнечного света превращают диоксид углерода и воду в углеводы и кислород. Главная масса кислорода находится в связанном состоянии; количество молекулярного кислорода в атмосфере оценивается в 1,5* 1015 m, что составляет всего лишь 0,01% от общего содержания кислорода в земной коре. В жизни природы кислород имеет исключительное значение. Кислород и его соединения незаменимы для поддержания жизни.

    14 слайд

    Описание слайда:

    Они играют важнейшую роль в процессах обмена веществ и дыхании. Кислород входит в состав белков, жиров, углеводов, из которых «построены» организмы; в человеческом организме, например, содержится около 65% кислорода. Большинство организмов получают энергию, необходимую для выполнения их жизненных функций, за счет окисления тех или иных веществ с помощью кислорода. Убыль кислорода в атмосфере в результате процессов дыхания, гниения и горения возмещается кислородом, выделяющимся при фотосинтезе. Вырубка лесов, эрозия почв, различные горные выработки на поверхности уменьшают общую массу фотосинтеза и снижают круговорот на значительных территориях. Наряду с этим, мощным источником кислорода является, по-видимому, фотохимическое разложение водяного пара в верхних слоях атмосферы под влиянием ультрафиолетовых лучей солнца. Таким образом, в природе непрерывно совершается круговорот кислорода, поддерживающий постоянство состава атмосферного воздуха. Кроме описанного выше круговорота кислорода в несвязанном виде, этот элемент совершает еще и важнейший круговорот, входя в состав воды. Круговорот воды (H2O) заключается в испарении воды с поверхности суши и моря, переносе ее воздушными массами и ветрами, конденсации паров и последующее выпадение осадков в виде дождя, снега, града, тумана.