Тело нервной клетки называется. Нейрон

Она осуществляется по трём основным группам призна­ков: морфологическим, функциональным и биохимическим.

1. Морфологическая классификация нейронов (по особенностям строения). По количеству отростков ней­роны делятся на униполярные (с одним отростком), бипо­лярные (с двумя отростками) , псевдоуниполярные (ложно униполярные), мультиполярные (имеют три и более отрост­ков). (Рис. 8-2). Последних в нервной системе больше всего.

Рис. 8-2. Типы нервных клеток.

1. Униполярный ней­рон.

2. Псевдоуниполярный нейрон.

3. Биполярный нейрон.

4. Мультиполярный нейрон.

В цитоплазме нейронов видны нейрофибриллы.

(По Ю. А. Афанасьеву и др.).

Псевдоуниполярными нейроны называют потому, что отходя от тела, аксон и дендрит вначале плотно прилегают друг к другу, создавая впечатление одного отростка, и лишь потом Т-образно расходятся (к ним относятся все рецепторные нейроны спинальных и краниальных ганглиев). Униполярные нейроны встречаются только в эмбриогенезе. Биполярными нейронами являются биполярные клетки сетчатки глаза, спирального и вестибулярного ганглиев. По форме описано до 80 вариантовнейронов: звёздчатые, пирамидальные, гру­шевидные, веретеновидные, паукообразные и др.

2. Функциональная (в зависимости от выполняемой функции и места в рефлекторной дуге):рецепторные, эффек­торные, вставочные и секреторные. Рецепторные (чувстви­тельные, афферентные) нейроны с помощью дендритов вос­принимают воздействия внешней или внутренней среды, ге­нерируют нервный импульс и передают его другим типам нейронов. Они встречаются только в спинальных ганглиях и чувствительных ядрах черепномозговых нервов. Эффектор­ные (эфферентные) нейроны, передают возбуждение на ра­бочие органы (мышцы или железы). Они располагаются в передних рогах спинного мозга и вегетативных нервных ганглиях. Вставочные (ассоциативные) нейронырасполага­ются между рецепторными и эффекторными нейронами; по количеству их больше всего, особенно в ЦНС. Секреторные нейроны (нейросекреторные клетки) –это специализирован­ные нейроны, по своей функции напоминающие эндокринные клетки . Они синтезируют и выделяют в кровь нейрогор­моны, расположены в гипоталамической области головного мозга. Они регулируют деятельность гипофиза, а через него и многие периферические эндокринные железы.

3. Медиаторная (по химической природе выделяемого медиатора):

Холинергические нейроны (медиатор ацетилхолин);

Аминергические (медиаторы – биогенные амины, на­пример норадреналин, серотонин, гистамин);

ГАМКергические (медиатор – гаммааминомасляная кислота);

Аминокислотергические (медиаторы – аминокислоты, такие как глютамин, глицин, аспартат);

Пептидергические (медиаторы – пептиды, например опиоид­ные пептиды, субстанция Р, холецистокинин, и др.);

Пуринергические (медиаторы – пуриновые нуклео­тиды, например аденин) и др.

Внутреннее строение нейронов

Ядро нейрона обычно крупное, округлое, с мелкодис­персным хроматином, 1-3 крупными ядрышками. Это отра­жает высокую интенсивность процессов транскрипции в ядре нейрона.

Клеточная оболочка нейрона способна генерировать и проводить электрические импульсы. Это достигается изме­нением локальной проницаемости её ионных каналов для Na+ и К+, изменением электрического потенциала и быст­рым перемещением его по цитолемме (волна деполяризации, нервный импульс).

В цитоплазме нейронов хорошо развиты все органоиды общего назначения. Митохондрии многочисленны и обеспе­чивают высокие энергетические потребности нейрона, свя­занные со значительной активностью синтетических процес­сов, проведением нервных импульсов, работой ионных насо­сов. Они характеризуются быстрым изнашиванием и обнов­лением (рис 8-3). Комплекс Гольджи очень хорошо развит. Не случайно эта органелла впервые была описана и демонст­рируется в курсе цитологии именно в нейронах. При свето­вой микроскопии он выявляется в виде колечек, нитей, зёр­нышек, расположенных вокруг ядра (диктиосомы). Много­численные лизосомы обеспечивают постоянное интенсивное разрушение изнашиваемых компонентов цитоплазмы ней­рона (аутофагия).

Р
ис. 8-3. Ультрастук­турная орга­низация тела нейрона.

Д. Дендриты. А. Ак­сон.

1. Ядро (ядрышко показано стрелкой).

2. Митохондрии.

3. Комплекс Голь­джи.

4. Хроматофильная субстанция (уча­стки гранулярной цито­плаз­мотической сети).

5. Лизосомы.

6. Аксонный холмик.

7. Нейротру­бочки, нейрофиламенты.

(По В. Л. Быкову).

Для нормального функционирования и обновления структур нейрона в них должен быть хорошо развит бело­ксинтезирующий аппарат (рис. 8-3). Гранулярная цитоплаз­матическая сеть в цитоплазме нейронов образует скопле­ния, которые хорошо окрашиваются основными красителями и видны при световой микроскопии в виде глыбок хромато­фильного вещества (базофильное, или тигровое вещество, субстанция Ниссля). Термин субстанция Ниссля сохра­нился в честь учёного Франца Ниссля, впервые ее описав­шего. Глыбки хроматофильного вещества расположены в пе­рикарионах нейронов и дендритах, но никогда не встреча­ются в аксонах, где белоксинтезирующий аппарат развит слабо (рис. 8-3). При длительном раздражении или повреж­дении нейрона эти скопления гранулярной цитоплазматиче­ской сети распадаются на отдельные элементы, что на свето­оптическом уровне проявляется исчезновением субстанции Ниссля (хроматолиз , тигролиз).

Цитоскелет нейронов хорошо развит, образует трёх­мерную сеть, представленную нейрофиламентами (толщиной 6-10 нм) и нейротрубочками (диаметром 20-30 нм). Нейро­филаменты и нейротрубочки связаны друг с другом попереч­ными мостиками, при фиксации они склеиваются в пучки толщиной 0,5-0,3 мкм, которые окрашиваются солями се­ребра.На светооптическом уровне они описаны под назва­нием нейрофибрилл. Они образуют сеть в перикарионах нейроцитов, а в отростках лежат параллельно (рис. 8-2). Ци­тоскелет поддерживает форму клеток, а также обеспечивает транспортную функцию – участвует в транспорте веществ из перикариона в отростки (аксональный транспорт).

Включения в цитоплазме нейрона представлены липид­ными каплями, гранулами липофусцина – «пигмента старе­ния» – жёлто-бурого цвета липопротеидной природы. Они представляют собой остаточные тельца (телолизосомы) с продуктами непереваренных структур нейрона. По-види­мому, липофусцин может накапливаться и в молодом воз­расте, при интенсивном функционировании и повреждении нейронов. Кроме того, в цитоплазме нейронов черной суб­станции и голубого пятна ствола мозга имеются пигментные включения меланина . Во многих нейронах головного мозга встречаются включения гликогена .

Нейроны не способны к делению, и с возрастом их число постепенно уменьшается вследствие естественной ги­бели. При дегенеративных заболеваниях (болезнь Альцгей­мера, Гентингтона, паркинсонизм) интенсивность апоптоза возрастает и количество нейронов в определённых участках нервной системы резко уменьшается.

Функционирование организма как единого целого, взаимодействие отдельных его частей, сохранение постоянства внутренней среды (гомеостаза) осуществляются двумя регуляторными системами: нервной и гуморальной.

Значение нервной системы . Основными функциями нервной системы являются: 1) быстрая и точная передача информации о состоянии внешней и внутренней среды организма; 2) анализ и интеграция всей информации; 3) организация адаптивного реагирования на внешние сигналы; 4) регуляция и координация деятельности всех органов и систем в соответствии с конкретными условиями деятельности и изменяющимися факторами внешней и внутренней среды организма. С деятельностью высших отделов нервной системы связано осуществление психических процессов и организация целенаправленного поведения.

Нервная система, являясь единой и высоко интегрированной, на основе структурных и функциональных особенностей, подразделяется на две основные части - центральную и периферическую.

Центральная нервная система (ЦНС) включает головной и спинной мозг, где расположены скопления нервных клеток – нервные центры, осуществляющие прием и анализ информации, ее интеграцию, регуляцию целостной деятельности организма, организацию адаптивного реагирования на внешние и внутренние воздействия.

Периферическая нервная система состоит из нервных волокон, расположенных вне центральной нервной системы. Она представлена пучками отростков нейронов (нервные стволы), лежащих в ЦНС или в ганглиях (узлах) за ее пределами (вегетативная нервная система). Одни из них - афферентные (чувствительные) волокна - передают сигналы от рецепторов, находящихся в разных частях тела в центральную нервную систему, другие - эффекторные (двигательные) волокна - из центральной нервной системы на периферию. В зависимости от объекта иннервации периферические нервы делятся на соматические (черепно- и спинно-мозговые) и вегетативные (симпатические и парасимпатические).

Нейрон (нейроцит) – основная структурно-функциональная единица нервной системы . Нейроны - высокоспециализированные клетки, приспособленные для приема, кодирования, обработки, интеграции, хранения и передачи информации. Нейрон состоит из тела и отростков двух типов: коротких ветвящихся дендритов и длинного отростка - аксона.

Тело нервной клетки имеет диаметр от 5 до 150 микрон. Оно является биосинтетическим центром нейрона, где происходят сложные метаболические процессы. Тело содержит ядро и цитоплазму, в которой расположено множество органелл, участвующих в синтезе клеточных белков (протеинов). От тела клетки отходит длинный нитевидный отросток аксон, выполняющий функцию передачи информации. Аксон покрыт особой миелиновой оболочкой, создающей оптимальные условия для проведения сигналов. Конец аксона сильно ветвится, его конечные веточки образуют контакты со множеством других клеток (нервных, мышечных и др.). Скопления аксонов образуют нервное волокно. Дендриты - сильно ветвящиеся отростки, которые во множестве отходят от тела клетки. От одного нейрона может отходить до 1000 дендритов. Тело и дендриты покрыты единой оболочкой и образуют воспринимающую (рецептивную) поверхность клетки. На ней расположена большая часть контактов от других нервных клеток - синапсов . Клеточная оболочка - мембрана - является хорошим электрическим изолятором. По обе стороны мембраны существует электрическая разность потенциалов – мембранный потенциал, уровень которого изменяется при активации синаптических контактов.


Синапс имеет сложное строение. Он образован двумя мембранами: пресинаптической и постсинаптической. Пресинаптическая мембрана находится на окончании аксона, передающего сигнал; постсинаптическая - на теле или дендритах, к которым сигнал передается. В синапсах при поступлении сигнала из синаптических пузырьков выделяются химические вещества двух типов - возбудительные (ацетилхолин, адреналин, норадреналин) и тормозящие (серотонин, гамма-аминомасляная кислота). Эти вещества - медиаторы , действуя на постсинаптическую мембрану, изменяют ее свойства в области контактов. При выделении возбуждающих медиаторов в области контакта возникает возбудительный постсинаптический потенциал (ВПСП), при действии тормозящих медиаторов - соответственно тормозящий постсинаптический потенциал (ТПСП). Их суммация приводит к изменению внутриклеточного потенциала в сторону деполяризации или гиперполяризации. При деполяризации клетка генерирует импульсы, передающиеся по аксону к другим клеткам или работающему органу. При гиперполяризации нейрон переходит в тормозное состояние и не генерирует импульсную активность. Множественность и разнообразие синапсов обеспечивает возможность широких межнейрональных связей и участие одного и того же нейрона в разных функциональных объединениях.

Классификация нейронов . Имея принципиально общее строение, нейроны сильно различаются размерами, формой, числом, ветвлением и расположением дендритов, длиной и разветвленностью аксона, что свидетельствует об их высокой специализации. Выделяются следующие два основных типа нейронов.

Пирамидные клетки - крупные нейроны разного размера ("коллекторы"), на которых сходятся (конвергируют) импульсы от разных источников.

Дендриты пирамидных нейронов пространственно организованы. Один отросток - апикальный дендрит - выходит из вершины пирамиды, ориентирован вертикально и имеет конечные горизонтальные разветвления. Другие - базальные дендриты - разветвляются у основания пирамиды. Дендриты густо усеяны специальными выростами (шипиками), которые повышают эффективность синаптической передачи. По аксонам пирамидных нейронов импульсация передается другим отделам ЦНС. Пирамидные нейроны по своей функции подразделяются на два типа: афферентные и эфферентные. Афферентные передают и принимают сигнал из сенсорных рецепторов, мышц, внутренних органов в центральную нервную систему. Нервные клетки, передающие сигналы из центральной нервной системы на периферию, называются эфферентными .

Вставочные (контактные) клетки или интернейроны . Они меньше по размерам, разнообразны по пространственному расположению отростков (веретенообразные, звездчатые, корзинчатые). Общим для них является широкая разветвленность дендритов и короткий аксон с разной степенью ветвления. Интернейроны обеспечивают взаимодействие различных клеток и поэтому иногда называются ассоциативными.

Представленность разных типов нейронов и характер их взаимосвязи существенно различаются в разных структурах мозга.

Возрастные изменения структуры нейрона и нервного волокна . На ранних стадиях эмбрионального развития нейрон, как правило, состоит из тела, имеющего два недифференцированных и неветвящихся отростка. Тело содержит крупное ядро, окруженное небольшим слоем цитоплазмы. Процесс созревания нейронов характеризуется быстрым увеличением цитоплазмы, увеличением в ней числа рибосом и формированием аппарата Гольджи, интенсивным ростом аксонов и дендритов. Различные типы нервных клеток созревают в онтогенезе гетерохронно. Наиболее рано (в эмбриональном периоде) созревают крупные афферентные и эфферентные нейроны. Созревание мелких клеток (интернейронов) происходит после рождения (в постнатальном онтогенезе) под влиянием средовых факторов, что создает предпосылки для пластических перестроек в центральной нервной системе. Отдельные части нейрона тоже созревают неравномерно. Наиболее поздно формируется дендритный шипиковый аппарат, развитие которого в постнатальном периоде в значительной мере обеспечивается притоком внешней информации. Покрывающая аксоны миелиновая оболочка интенсивно растет в постнатальном периоде, ее рост ведет к повышению скорости проведения импульса по нервному волокну. Миелинизация проходит в таком порядке: сначала - периферические нервы, затем волокна спинного мозга, стволовая часть головного мозга, мозжечок и позже - волокна больших полушарий головного мозга. Двигательные нервные волокна покрываются миелиновой оболочкой уже к моменту рождения, чувствительные (например, зрительные) волокна - в течение первых месяцев постнатальной жизни ребенка.

Функции нейрона

Свойства нейрона

Основные закономерности проведения возбуждения по нервным волокнам

Проводниковая функция нейрона.

Морфофункциональные свойства нейрона.

Строение и физиологические функции мембраны нейрона

Классификация нейронов

Строение нейрона и его функциональные части.

Свойства и функции нейрона

· высокая химическая и электрическая возбудимость

· способность к самовозбуждению

· высокая лабильность

· высокий уровень энергообмена. Нейрон не прибывает в состоянии покоя.

· низкая способность к регенерации (рост нейритов всего лишь 1 мм в сутки)

· способность к синтезу и секреции химических веществ

· высокая чувствительность к гипоксии, ядам, фармакологическим препаратам.

· воспринимающая

· передающая

· интегрирующая

· проводниковая

· мнестическая

Структурной и функциональной единицей нервной системы является нервная клетка – нейрон. Количество нейронов в нервной системе составляет примерно10 11 . На одном нейроне может быть до 10000 синапсов. Если только синапсы считать ячейками хранения информации, то можно заключить, что нервная система человека может хранить 10 19 ед. информации, т. е. способна вместить все знания, накопленные человечеством. Поэтому предположение о том, что мозг человека запоминает все происходящее в течение жизни в организме и при взаимодействии со средой биологически является вполне обоснованным.

Морфологически выделяют следующие составные части нейрона: тело (сома) и выросты цитоплазмы – многочисленные и, как правило, короткие ветвящиеся отростки, дендриты, и один наиболее длинный отросток – аксон. Выделяют также аксонный холмик – место выхода аксона из тела нейрона. Функционально принято выделять три части нейрона: воспринимающую – дендриты и мембрана сомы нейрона, интегративную – сома с аксонным холмиком и передающую – аксонный холмик и аксон.

Тело клетки содержит ядро и аппарат синтеза ферментов и других молекул, необходимых для жизнедеятельности клетки. Обычно тело нейрона имеет при­близительно сферическую или пирамидальную форму.

Дендриты – основное воспринимающее поле нейрона. Мембрана нейрона и синаптической части тела клетки способна реагировать на медиаторы, выделяемые в синапсах, изменением электрического потенциала. Нейрон как информационная структура должен иметь большое количество входов. Обычно нейрон имеет несколько ветвящихся дендритов. Информация от других нейронов поступает к нему через специализированные контакты на мембране – шипики. Чем сложнее функция данной нервной структуры, чем больше сенсорных систем посылают к ней информацию, тем больше шипиков на дендритах нейронов. Максимальное их количество содержится на пирамидных нейронах двигательной зоны коры большого мозга и достигает нескольких тысяч. Шипики занимают до 43% поверхности мембраны сомы и дендритов. За счет шипиков воспринимающая поверхность нейрона значительно возрастает и может достигать, например, у клеток Пуркинье, 250 000 мкм 2 (сравним с размером нейрона – от 6 до 120 мкм). Важно подчеркнуть, что шипики являются не только структурным, но и функциональным образованием: их количество определяется информацией, поступающей к нейрону; если данный шипик или группа шипиков длительное время не получают информации, они исчезают.



Аксон представляет собой вырост цитоплазмы, приспособленный для проведения информации, собранной дендритами, переработанной в нейроне и переданной через аксонный холмик. На конце аксона находится аксонный холмик - генератор нервных импульсов. Аксон данной клетки имеет постоянный диаметр, в большинстве случаев одет в миелиовую оболочку, образованную из глии. На конце аксон имеет разветвления, в которых находятся митохондрии и секреторные образования – везикулы.

Тело и дендриты нейронов являются структурами, которые осуществляют интеграцию поступающих к нейрону многочисленных сигналов. За счет огромного количества синапсов на нервных клетках происходит взаимодействие многих ВПСП (возбуждающих постсинаптических потенциалов) и ТПСП (тормозных постсинаптических потенциалов), (об этом будет более подробно сказано во второй части); результатом такого взаимодействия является появление на мембране аксонного холмика потенциалов действия. Длительность ритмического разряда, число импульсов в одном ритмическом разряде и продолжительность интервала между разрядами являются основным способом кодирования информации, которую передает нейрон. Наиболее высокая частота импульсов в одном разряде наблюдается у вставочных нейронов, поскольку у них следовая гиперполяризация значительно короче, чем у двигательных нейронов. Восприятие поступающих к нейрону сигналов, взаимодействие возникающих под их влиянием ВПСП и ТПСП, оценка их приоритета, изменение метаболизма нервных клеток и формирование в итоге различной временной последовательности потенциалов действия составляет уникальную характеристику нервных клеток – интегративную деятельность нейронов.

Рис. Мотонейрон спинного мозга позвоночных. Указаны функции разных его частей.Области возникновения градуальных и импульсных электрических сигналов в нейронной цепи: Градуальные потенциалы, возникающие в чувствительных окончаниях афферентных (чувствительных, сенсорных) нервных клеток в ответ на раздражитель, приблизительно соответствуют его величине и длительности, хотя они и не бывают строго пропорциональным амплитуде раздражителя и не повторяют его конфигурацию. Эти потенциалы распространяются по телу чувствительного нейрона и вызывают в его аксоне импульсные распространяющиеся потенциалы действия. Когда потенциал действия достигает окончания нейрона, происходит выброс медиатора, приводящий к появлению градуального потенциала в следующем нейроне. Если в свою очередь этот потенциал достигает порогового уровня, в этом постсинаптическом нейроне появляется потенциал действия или серия таких потенциалов. Таким образом в нервной цепи наблюдается чередование градуальных и импульсных потенциалов.

Классификация нейронов

Существует несколько типов классификации нейронов.

По строению нейроны делят на три типа: униполярные, биполярные и мультиполярные.

Истинно униполярные нейроны находятся только в ядре тройничного нерва. Эти нейроны обеспечивают проприоцептивную чувствительность жевательных мышц. Остальные униполярные нейроны называют псевдоуниполярными, поскольку на самом деле они имеют два отростка, один идет с периферии нервной системы, а другой – в структуры центральной нервной системы. Оба отростка сливаются вблизи тела нервной клетки в один отросток. Такие псевдоуниполярные нейроны располагаются в сенсорных узлах: спинальных, тройничном и др. Они обеспечивают восприятие тактильной, болевой, температурной, проприоцептивной, барорецептивной, вибрационной чувствительности. Биполярные нейроны имеют один аксон и один дендрит. Нейроны этого типа встречаются в основном в периферических частях зрительной, слуховой и обонятельной систем. Дендрит биполярного нейрона связан с рецептором, а аксон – с нейроном следующего уровня соответствующей сенсорной системы. Мультиполярные нейроны имеют несколько дендритов и один аксон; все они являются разновидностями веретенообразных, звездчатых, корзинчатых и пирамидных клеток. Перечисленные типы нейронов можно видеть на слайдах.

В зависимости от природы синтезируемого медиатора нейроны делятся на холинергические, норадреналинергические, ГАМК-ергические, пептидергические, дофамиергические, серотонинергические и др. Наибольшее число нейронов имеет, по-видимому, ГАМК-ергическую природу – до 30%, холинергические системы объединяют до 10 – 15%.

По чувствительности к действию раздражителей нейроны делят на моно- , би- и полисенсорные . Моносенсорные нейроны располагаются чаще в проекционных зонах коры и реагируют только на сигналы своей сенсорности. Например, большая часть нейронов первичной зоны зрительной области коры реагируют только на световое раздражение сетчатки глаза. Моносенсорные нейроны функционально подразделяются по их чувствительности к разным качествам своего раздражителя. Так, отдельные нейроны слуховой зоны коры большего мозга могут реагировать на предъявления тона частотой 1000 Гц и не реагировать на тоны другой частоты, такие нейроны называются мономодальными. Нейроны, реагирующие на два разных тона, называются бимодальными, на три и более – полимодальными. Бисенсорные нейроны обычно располагаются во вторичных зонах коры какого-либо анализатора и могут реагировать на сигналы как своей, так и другой сенсорности. Наример, нейроны вторичной зоны зрительной области коры реагируют на зрительные и слуховые стимулы. Полисенсорные нейроны чаще всего располагаются в ассоциативных зонах мозга; они способны реагировать на раздражение слуховой, кожной, зрительной и других сенсорных систем.

По типу импульсации нейроны делятся на фоновоактивные , то есть возбуждающиеся без действия раздражителя и молчащие , которые проявляют импульсную активность только в ответ на раздражение. Фоновоактивные нейроны имеют большое значение в поддержании уровня возбуждения коры и других структур мозга; их число увеличивается в состоянии бодрствования. Имеется несколько типов импульсации фоновоактивных нейронов. Непрерывно–аритмичный – если нейрон генерирует импульсы непрерывно с некоторым замедлением или увеличением частоты разрядов. Такие нейроны обеспечивают тонус нервных центров. Пачечный тип импульсации – нейроны такого типа генерируют группу импульсов с коротким межимпульсным интервалом, после этого наступает период молчания и вновь возникает группа, или пачка импульсов. Межимпульсные интервалы в пачке равны от 1 до 3 мс, а период молчания составляет от 15 до 120 мс. Групповой тип активности характеризуется нерегулярным появлением группы импульсов с межимпульсным интервалом от 3 до 30 мс, после чего наступает период молчания.

Фоновоактивные нейроны делятся на возбуждающиеся и тормозящиеся, которые, соответственно, увеличивают или уменьшают частоту разряда в ответ на раздражение.

По функциональному назначению нейроны подразделяются на афферентные, интернейроны, или вставочные и эфферентные.

Афферентные нейроны выполняют функцию получения и передачи информации в вышележащие структуры ЦНС. Афферентные нейроны имеют большую разветвленную сеть.

Вставочные нейроны обрабатывают информацию, полученную от афферентных нейронов, и передают ее на другие вставочные или на эфферентные нейроны. Вставочные нейроны могут быть возбуждающими или тормозными.

Эфферентные нейроны – это нейроны, передающие информацию от нервного центра к другим центрам нервной системы или к исполнительным органам. Например, эфферентные нейроны двигательной зоны коры большого мозга – пирамидные клетки посылают импульсы к мотонейронам передних рогов спинного мозга, то есть они являются эфферентными для коры, но афферентными для спинного мозга. В свою очередь мотонейроны спинного мозга являются эфферентными для передних рогов и посылают импульсы к мышцам. Основной особенностью эфферентных нейронов является наличие длинного аксона, обеспечивающего большую скорость проведения возбуждения. Все нисходящие пути спинного мозга (пирамидный, ретикулоспинальный, руброспинальный и др.) образованы аксонами эфферентных нейронов соответствующих отделов центральной нервной системы. Нейроны автономной нервной системы, например, ядер блуждающего нерва, боковых рогов спинного мозга также относятся к эфферентным.

Нейрон – структурно-функциональная единица нервной системы, представляет собой электрически возбудимую клетку, которая обрабатывает и передает информацию посредством электрических и химических сигналов.

Развитие нейрона.

Нейрон развивается из небольшой клетки-предшественницы, которая перестаёт делиться ещё до того, как выпустит свои отростки. (Однако вопрос о делении нейронов в настоящее время остаётся дискуссионным.) Как правило, первым начинает расти аксон, а дендриты образуются позже. На конце развивающегося отростка нервной клетки появляется утолщение неправильной формы, которое, видимо, и прокладывает путь через окружающую ткань. Это утолщение называется конусом роста нервной клетки. Он состоит из уплощенной части отростка нервной клетки с множеством тонких шипиков. Микрошипики имеют толщину от 0,1 до 0,2 мкм и могут достигать 50 мкм в длину, широкая и плоская область конуса роста имеет ширину и длину около 5 мкм, хотя форма её может изменяться. Промежутки между микрошипиками конуса роста покрыты складчатой мембраной. Микрошипики находятся в постоянном движении - некоторые втягиваются в конус роста, другие удлиняются, отклоняются в разные стороны, прикасаются к субстрату и могут прилипать к нему.

Конус роста заполнен мелкими, иногда соединёнными друг с другом, мембранными пузырьками неправильной формы. Непосредственно под складчатыми участками мембраны и в шипиках находится плотная масса перепутанных актиновых филаментов. Конус роста содержит также митохондрии, микротрубочки и нейрофиламенты, аналогичные имеющимся в теле нейрона.

Вероятно, микротрубочки и нейрофиламенты удлиняются главным образом за счёт добавления вновь синтезированных субъединиц у основания отростка нейрона. Они продвигаются со скоростью около миллиметра в сутки, что соответствует скорости медленного аксонного транспорта в зрелом нейроне. Поскольку примерно такова и средняя скорость продвижения конуса роста, возможно, что во время роста отростка нейрона в его дальнем конце не происходит ни сборки, ни разрушения микротрубочек и нейрофиламентов. Новый мембранный материал добавляется, видимо, у окончания. Конус роста - это область быстрого экзоцитоза и эндоцитоза, о чём свидетельствует множество находящихся здесь пузырьков. Мелкие мембранные пузырьки переносятся по отростку нейрона от тела клетки к конусу роста с потоком быстрого аксонного транспорта. Мембранный материал, видимо, синтезируется в теле нейрона, переносится к конусу роста в виде пузырьков и включается здесь в плазматическую мембрану путём экзоцитоза, удлиняя таким образом отросток нервной клетки.



Росту аксонов и дендритов обычно предшествует фаза миграции нейронов, когда незрелые нейроны расселяются и находят себе постоянное место.

Нервная клетка - нейрон - является структурной и функциональной единицей нервной системы. Нейрон - клетка, способная воспринимать раздражение, приходить в состояние возбуждения, вырабатывать нервные импульсы и передавать их другим клеткам. Нейрон состоит из тела и отростков - коротких, ветвящихся (дендритов) и длинного (аксона). Импульсы всегда движутся по дендритам к клетке, а по аксону - от клетки.

Виды нейронов

Нейроны, передающие импульсы в центральную нервную систему (ЦНС), называются сенсорными или афферентными . Моторные, или эфферентные, нейроны передают импульсы от ЦНС к эффекторам, например к мышцам. Те и другие нейроны могут связываться между собой с помощью вставочных нейронов (интернейронов). Последние нейроны еще называются контактными или промежуточ­ными .

В зависимости от числа и рас­положения отростков нейроны делятся на униполярные, биполярные и мультиполярные .

Строение нейрона

Нервная клетка (нейрон) со­стоит из тела (перикариона ) с ядром и нескольких отростков (рис. 33).

Перикарион является метаболическим центром, в кото­ром протекает большинство син­тетических процессов, в частно­сти, синтез ацетилхолина. В теле клетки есть рибосомы, микротру­бочки (нейротрубочки) и другие органоиды. Нейроны формируют­ся из клеток-нейробластов, кото­рые еще не имеют выростов. От тела нервной клетки отходят ци­топлазматические отростки, число которых может быть различным.

Короткие ветвящиеся отростки , проводящие импульсы к телу клетки, называются дендритами . Тонкие и длинные отростки, прово­дящие импульсы от перикариона к другим клеткам или перифериче­ским органам, называются аксонами . Когда в процессе формирования нервных клеток из нейробластов происходит отрастание аксонов, спо­собность нервных клеток делиться утрачивается.

Концевые участки аксона способны к нейросекреции. Их тонкие веточки со вздутиями на концах соединяются с соседними нейронами в специальных местах - синапсах. Вздутые окончания содержат мел­кие пузырьки, наполненные ацетилхолином, играющим роль нейромедиатора. Есть в пузырьках и ми­тохондрии (рис. 34). Разветвлен­ные отростки нервных клеток пронизывают весь организм жи­вотного и образуют сложную систему связей. На синапсах возбуждение передается от ней­рона к нейрону или к мышечным клеткам. Материал с сайтаhttp://doklad-referat.ru

Функции нейронов

Основная функция нейронов - обмен информации (нервными сигналами) между частями тела. Нейроны восприим­чивы к раздражению, т. е. способны возбуждаться (генерировать возбуждение), проводить возбуждения и, наконец, передавать его дру­гим клеткам (нервным, мышечным, железистым). По нейронам прохо­дят электрические импульсы, и это делает возможной коммуни­кацию между рецепторами (клетками или органами, воспринимаю­щими раздражение) и эффекторами (тканями или органами, отвечаю­щими на раздражение, например мышцами).

Микроструктура нервной ткани

Нервная система состоит в основном из нервной ткани. Нервная ткань состоит из нейронов и нейроглии.

Нейрон (нейроцит) – структурно-функциональная единица нервной системы (рис.2.1, 2.2). По приблизительным расчетам, в нервной системе человека насчитывается около 100 млрд. нейронов.

Рис. 2.1. Нейрон. Импрегнация нитратом серебра

1 — тело нервной клетки; 2 – аксон; 3 — дендриты

Рис.2.2. Схема строения нейрона (по Ф. Блум и др., 1988)

Внешнее строение нейрона

Особенностью внешнего строения нейрона является наличие центральной части — тела (soma) и отростков. Отростки нейрона бывают двух видов – аксон и дендриты.

Аксон (от греч. axis – ось) – может быть только один. Это эфферентный , то есть отводящий (от лат. efferens — выносить) отросток: он проводит импульсы от тела нейрона к периферии. Аксон на своем протяжении не разветвляется, но от него под прямым углом могут отходить тонкие коллатерали. Место отхождения аксона от тела нейрона называется аксонным холмиком. На конце аксон разделяется на несколько пресинаптических окончаний (терминалей), каждое из которых заканчивается утолщением – пресинаптической бляшкой, участвующей в образовании синапса.

Дендриты (от греч. dendron- «дерево») — дихотомически ветвящиеся отростки, которых может быть у нейрона от 1 до 10-13. Это афферентные, то есть приносящие (от лат. аfferens — приносить) отростки. На мембране дендритов имеются выросты – дендритные шипики. Это места синаптических контактов. Шипиковый аппарат у человека активно формируется до 5-7-летнего возраста, когда происходят наиболее интенсивные процессы накопления информации.

В нервной системе высших животных и человека нейроны очень многообразны по форме, размерам и функциям.

Классификация нейронов :

— по количеству отростков: псевдоуниполярные, биполярные, мультиполярные (рис.2.3.);

— теме по форме тела: пирамидные, грушевидные, звездчатые, корзинчатые и др. (рис.2.4; 2.5);

— по функции: афферентные (чувствительные, проводят нервные импульсы от органов и тканей в мозг, тела лежат вне ЦНС в чувствительных узлах), ассоциативные (передают возбуждение с афферентных на эфферентные нейроны), эфферентные (двигательные или вегетативные, проводят возбуждение к рабочим органам, тела лежат в ЦНС или вегетативных ганглиях).

Рис.2.3. Виды нейронов с разным количеством отростков

1 — униполярный; 2 — псевдоуниполярный;

3 — биполярный; 4 — мультиполярный

А Б В

Рис. 2.4. Нейроны различной формы А – пирамидные нейроны коры больших полушарий; Б – грушевидные нейроны коры мозжечка; В – мотонейроны спинного мозга

Рис.2.5. Нейроны различной формы (по Дубровинской Н.В.и др., 2000)

Анализ статистических показателей работы Государственного учреждения здравоохранения «Областной противотуберкулезный диспансер № 8»

6. Статистический анализ основных объёмных (количественных) и качественных показателей работы ЛПУ (закреплённых структурных подразделений)

Одним из основных разделов работы противотуберкулёзной службы является обследование больных туберкулёзом, их лечение на амбулаторном этапе и диспансерное наблюдение весь период нахождения больного на учёте…

Влияние питания на здоровье человека

2.

Влияние спортивного питания на функциональное состояние организма

В последнее время появилось огромное количество продуктов, способных, по уверению производителей, сделать занятия спортом максимально эффективными. Рассмотрим, что же представляет собой спортивное питание…

Здоровое питание

1 Строение и функции толстого кишечника. Значение кишечной микрофлоры. Влияние пищевых факторов на толстый кишечник

Строение и функции толстого кишечника Толстый кишечник является последним участком ЖКТ и состоит из шести отделов: — слепая кишка (цекум…

Здоровье как состояние и свойство организма

ФУНКЦИОНАЛЬНОЕ СОСТОЯНИЕ ЧЕЛОВЕКА

Физическое развитие человека тесно связано с функциональным состоянием организма — еще одной составной частью здоровья.

Функциональное состояние организма человека определяется наличием резервов его основных систем…

Лечебная физкультура при переломах голени

1.1 Строение и характеристика основных элементов голеностопного сустава

Голеностопный сустав представляет собой сложное анатомическое образование, состоящее из костной основы и связочного аппарата с проходящими вокруг него сосудами, нервами и сухожилиями…

Особенности снятия ЭКГ

Формирование элементов ЭКГ

Стандартная ЭКГ записывается в 12 отведениях: · Стандартных (I, II, III); · Усиленных от конечностей (aVR, aVL, aVF); · Грудных (V1, V2, V3, V4, V5, V6).

Стандартные отведения (предложил Эйнтховен в 1913 году). I — между левой рукой и правой рукой…

Отчет и дневник производственной (профессиональной) практики по разделу «Управление сестринским делом»

Характеристика структурных подразделений

В структуру поликлиники входят: I Приёмное отделение — регистратура, инфекционное отделение (стол справок), гардероб, стол вызова врача на дом, стол оформления листков временной нетрудоспособности, бокс…

1 Значение и функциональная деятельность элементов нервной системы

Координация физиологических и биохимических процессов в организме происходит посредством регуляторных систем: нервной и гуморальной.

Гуморальная регуляция осуществляется через жидкие среды организма — кровь, лимфу, тканевую жидкость…

Раздражение, возбудимость и возбуждение у детей

2 Возрастные изменения морфофункциональной организации нейрона

На ранних стадиях эмбрионального развития нервная клетка имеет большое ядро, окруженное незначительным количеством цитоплазмы.

В процессе развития относительный объем ядра уменьшается…

Скелет туловища. Мышечная ткань. Сосудистая система

1. СТРОЕНИЕ И ФУНКЦИОНАЛЬНОЕ ЗНАЧЕНИЕ СКЕЛЕТА ТУЛОВИЩА. ВЛИЯНИЕ УСЛОВИЙ ЖИЗНИ, ТРУДА, ФИЗИЧЕСКИХ УПРАЖНЕНИЙ И ЗАНЯТИЙ СПОРТОМ НА ФОРМУ, СТРОЕНИЕ, ПОДВИЖНОСТЬ ПОЗВОНОЧНОГО СТОЛБА И ГРУДНОЙ КЛЕТКИ

Позвоночный столб (позвоночник).

Наличие позвоночного столба (columria vertebralis) служит важнейшим отличительным признаком позвоночных животных. Позвоночник связывает части тела…

Скелет туловища. Мышечная ткань.

Нервные клетки (Нейроны)

Сосудистая система

4. ПРОДОЛГОВАТЫЙ И ЗАДНИЙ МОЗГ. НЕЙРОННАЯ ОРГАНИЗАЦИЯ И ФУНКЦИОНАЛЬНОЕ ЗНАЧЕНИЕ ЯДЕР СТВОЛА. РЕТИКУЛЯРНАЯ ФОРМАЦИЯ СТВОЛА, ЕЕ СТРУКТУРНАЯ ОРГАНИЗАЦИЯ

Продолговатый мозг (medulla oblongata) в эволюции хордовых является одним из древнейших образований головного мозга. Это жизненно важный отдел центральной нервной системы позвоночных: в нем расположены центры дыхания, кровообращения, глотания и др…

Структура и функция синапса.

Классификации синапсов. Химический синапс, медиатор

I. Физиология нейрона и его строение

Структурной и функциональной единицей нервной системы является нервная клетка — нейрон. Нейроны — специализированные клетки, способные принимать, обрабатывать, кодировать, передавать и хранить информацию…

Физиологические основы управления движениями

4. Организация двигательной коры и ее функциональное значение

Кора больших полушарий мозга связана со всеми органами тела через нижележащие отделы центральной нервной системы, с которыми она напрямую связана нервными путями.

С одной стороны до той или иной точки коры доходят импульсы…

Физическая реабилитация в гинекологии и акушерстве

3.7 Функциональное недержание мочи

Функциональное недержание мочи может быть следствием грубого травматического воздействия на мочеполовую систему, результатом растягивания задней стенки уретры, опущения передней стенки влагалища…

Хорея Гентингтона

4.3 Механизмы и функциональное значение тонического ГАМК-эргического торможения

Механизмы.

Фазное торможение нейронов определяется дискретным выбросом в синаптических соединениях таких количеств ГАМК, что в постсинаптической щели создается весьма высокая концентрация данного передатчика…

Структура и строение нейрона

Эфферентные нейроны нервной системы - это нейроны, передающие информацию от нервного центра к исполнительным органам или другим центрам нервной системы. Например, эфферентные нейроны двигательной зоны коры большого мозга - пирамидные клетки, посылают импульсы к мотонейронам передних рогов спинного мозга, т.

е. они являются эфферентными для этого отдела коры большого мозга. В свою очередь мотонейроны спинного мозга являются эфферентными для его передних рогов и посылают сигналы к мышцам. Основной особенностью эфферентных нейронов является наличие длинного аксона, обладающего большой скоростью проведения возбуждения.

Эфферентные нейроны разных отделов коры больших полушарий связывают между собой эти отделы по аркуатным связям. Такие связи обеспечивают внутриполушарные и межполушарные отношения, формирующие функциональное состояние мозга в динамике обучения, утомления, при распознавании образов и т. д. Все нисходящие пути спинного мозга (пирамидный, руброспиналь- ный, ретикулоспинальный и т. д.) образованы аксонами эфферентных нейронов соответствующих отделов центральной нервной системы.

Нейроны автономной нервной системы, например ядер блуждающего нерва, боковых рогов спинного мозга, также относятся к эфферентным.

А так же в разделе «Эфферентные нейроны»

Поиск Лекций

Нервные клетки, их классификация и функции. Особенности возникновения и распространения возбуждения в афферентных нейронах.

Нервная система человека и животных состоит из нервных клеток, тесно связанных с глиальными клетками.

Классификация. Структурная классификация: На основании числа и расположения дендритов и аксона нейроны делятся на безаксонные, униполярные нейроны, псевдоуниполярные нейроны, биполярные нейроны и мультиполярные (много дендритных стволов, обычно эфферентные) нейроны. Безаксонные нейроны - небольшие клетки, сгруппированы вблизи спинного мозга в межпозвоночных ганглиях, не имеющие анатомических признаков разделения отростков на дендриты и аксоны.

Все отростки у клетки очень похожи. Функциональное назначение безаксонных нейронов слабо изучено. Униполярные нейроны - нейроны с одним отростком, присутствуют, например в сенсорном ядре тройничного нерва в среднем мозге. Биполярные нейроны - нейроны, имеющие один аксон и один дендрит, расположенные в специализированных сенсорных органах - сетчатке глаза, обонятельном эпителии и луковице, слуховом и вестибулярном ганглиях.

Мультиполярные нейроны - нейроны с одним аксоном и несколькими дендритами. Данный вид нервных клеток преобладает в центральной нервной системе.

Псевдоуниполярные нейроны - являются уникальными в своём роде. От тела отходит один отросток, который сразу же Т-образно делится. Весь этот единый тракт покрыт миелиновой оболочкой и структурно представляет собой аксон, хотя по одной из ветвей возбуждение идёт не от, а к телу нейрона.

Структурно дендритами являются разветвления на конце этого (периферического) отростка. Триггерной зоной является начало этого разветвления (т. е. находится вне тела клетки). Такие нейроны встречаются в спинальных ганглиях.

Функциональная классификация

По положению в рефлекторной дуге различают:

Афферентные нейроны (чувствительный, сенсорный или рецепторный).

К нейронам данного типа относятся первичные клетки органов чувств и псевдоуниполярные клетки, у которых дендриты имеют свободные окончания.

Эфферентные нейроны (эффекторный, двигательный или моторный). К нейронам данного типа относятся конечные нейроны - ультиматные и предпоследние - не ультиматные.

Ассоциативные нейроны (вставочные или интернейроны) - группа нейронов осуществляет связь между эфферентными и афферентными, их делят на комиссуральные и проекционные (головной мозг).

Морфологическая классификация

Морфологическое строение нейронов многообразно.

В связи с этим при классификации нейронов применяют несколько принципов:

Учитывают размеры и форму тела нейрона;

Количество и характер ветвления отростков;

Длину нейрона и наличие специализированные оболочки.

По форме клетки, нейроны могут быть сферическими, зернистыми, звездчатыми, пирамидными, грушевидными, веретеновидными, неправильными и т. д. Размер тела нейрона варьирует от 5 мкм у малых зернистых клеток до 120-150 мкм у гигантских пирамидных нейронов.

Длина нейрона у человека составляет от 150 мкм до 120 см.

По количеству отростков выделяют следующие морфологические типы нейронов:

Униполярные (с одним отростком) нейроциты, присутствующие, например, в сенсорном ядре тройничного нерва в среднем мозге;

Псевдоуниполярные клетки, сгруппированные вблизи спинного мозга в межпозвоночных ганглиях;

Биполярные нейроны (имеют один аксон и один дендрит), расположенные в специализированных сенсорных органах - сетчатке глаза, обонятельном эпителии и луковице, слуховом и вестибулярном ганглиях;

Мультиполярные нейроны (имеют один аксон и несколько дендритов), преобладающие в ЦНС.

Функции нерв кл-ок: состоит в передаче информации (сообщений, приказов или запретов) с помощью нервных импульсов.

Нервные импульсы распространяются по отросткам нейронов и передаются через синапсы (как правило, от аксональной терминали на сому или дендрит следующего нейрона). Возникновение и распространение нервного импульса, а также его синаптическая передача тесно связаны с электрическими явлениями на плазматической мембране нейрона.

Одним из ключевых механизмов в деятельности нервной клетки является преобразование энергии раздражитель в электрический сигнал (ПД).

Тела чувствительных клеток вынесены за пределы спинного мозга. Часть из них располагается в спинномозговых узлах. Это тела соматических афферентов, иннервирующих в основном скелетные мышцы.

Другие находятся в экстра- и интрамуральных ганглиях автономной нервной системы и обеспечивают чувствительность только внутренних органов. Чувств. кл-ки имеют один отросток, который делится на 2 ветви. Одна из них проводит возбуждение от рецептора к телу клетки, другая – от тела нейрона к нейронам спинного или головного мозга. Распространение возбуждения из одной ветви в другую может происходит без участия тала клетки. Афферентный путь проведения возбуждения от рецепторов в ЦНС может включать от одной до нескольких афферентных нервных клеток.

Первая нервная клетка, непосредственно связанная с рецептором, называется рецепторной, последующие – часто называют сенсорными, или чувствительными.

Они могут располагаться на различных уровнях ЦНС, начиная от спинного мозга и кончая афферентными зонами коры больших полушарий. Афферентные нервные волокна, являющиеся отростками рецепторных нейронов, проводят возбуждение от рецепторов с различной скоростью. Большинство афферентных нервных волокон относится к группе А (подгруппам б, в и г) и проводят возбуждение со скоростью от 12 до 120 м/с. К этой группе принадлежат афферентные волокна, которые отходят от тактильных, температурных, болевых рецепторов.

Процесс перехода возбуждения от афферентных нейронов к эфферентным осуществляется в нервных центрах. Необходимым условием оптимальной передачи возбуждения с афферентной части рефлекторной дуги на эфферентную через нервный центр является достаточный уровень метаболизма нервных клеток и их снабжение кислородом.

8. Современные представления о процессе возбуждения. Местный процесс возбуждения (локальный ответ), его переход в распространяющееся возбуждение.

Изменение возбудимости при возбуждении.

Возбуждение – клеток и тканей активно реагировать на раздражение. Возбудимость – это свойство ткани отвечать на возбуждение. 3 типа возбудимых тканей: нервная, железистая и мышечная.

Возбуждение представляет собой как бы взрывной процесс, возникающий в результате изменения проницаемости мембраны под влиянием раздражителя. Это изменение вначале относительно невелико и сопровождается лишь небольшой деполяризацией, небольшим уменьшением мембранного потенциала в том месте, где было приложено раздражение, и не распространяется вдоль возбудимой ткани (это так называемое местное возбуждение).

Достигнув критического – порогового — уровня, изменение разности потенциалов лавинообразно нарастает и быстро — в нерве за несколько десятитысячных долей секунды — достигает своего максимума.

Локальный ответ – добавочная деполяризация обусловленая повышением Na+-проводимости.

Во время локальных ответов вход Na+ может существенно превосходить выход К+, однако Na+-ток еще не так велик, чтобы деполяризация мембраны стала достаточно быстрой для возбуждения соседних участков или генерации потенциала действия.

Возбуждение развивается не полностью, т.е. остается локальным процессом и не распространяется. Локальный ответ такого типа может конечно при небольших дополнительных стимулах, например синаптических потенциалах, легко переходить в полноценное возбуждение. Первые признаки локального ответа появляются при действии стимулов, составляющих 50-70% от пороговой величины.

По мере дальнейшего усиления раздражающего тока локальный ответ увеличивается, и в момент, когда деполяризация мембраны достигает критического уровня, возникает потенциал действия.

ИЗМЕНЕНИЕ ЭЛЕКТРОВОЗБУДИМОСТИ ПРИ ВОЗБУЖДЕНИИ ЭЛЕКТРОВОЗБУДИМОСТЬ – обратно пропорциональна порогу электрического раздражения. Ее обычно измеряют на фоне покоя. При возбуждении этот показатель изменяется.

Изменение электровозбудимости в ходе развития пика потенциала действия и после его завершения включает последовательно несколько фаз:

1. Абсолютная рефрактерность — т.е. полная невозбудимость, определяемая сначала полной занятостью "натриевого" механизма, а затем инактивацией натриевых каналов (это примерно соотвествует пику потенциала действия).

2. Относительная рефрактерность — т.е.

Структура и строение нейрона

сниженная возбудимость, связанная с частичной натриевой инактивацией и развитием калиевой активации. При этом порог повышен, а ответ [ПД] снижен.

3. Экзальтация — т.е. повышенная возбудимость — супернормальность, появляющаяся от следовой деполяризации.

4. Субнормальность — т.е. пониженная возбудимость, возникающая от следовой гиперполяризации.

©2015-2018 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.