Химия подготовка к зно и дпа комплексное издание. Ряд стандартных электродных потенциалов (напряжений)

Все металлы, в зависимости от их окислительно-восстановительной активности объединяют в ряд, который называется электрохимическим рядом напряжения металлов (так как металлы в нем расположены в порядке увеличения стандартных электрохимических потенциалов) или рядом активности металлов:

Li, K, Ва, Ca, Na, Mg, Al, Zn, Fe, Ni, Sn, Pb, H 2 , Cu, Hg, Ag, Рt, Au

Наиболее химически активные металлы стоят в ряду активности до водорода, причем, чем левее расположен металл, тем он активнее. Металлы, занимающие в ряду активности, место после водорода считаются неактивными.

Алюминий

Алюминий представляет собой серебристо-белого цвета. Основные физические свойства алюминия – легкость, высокая тепло- и электропроводность. В свободном состоянии при пребывании на воздухе алюминий покрывается прочной пленкой оксида Al 2 O 3 , которая делает его устойчивым к действию концентрированных кислот.

Алюминий относится к металлам p-семейства. Электронная конфигурация внешнего энергетического уровня – 3s 2 3p 1 . В своих соединениях алюминий проявляет степень окисления равную «+3».

Алюминий получают электролизом расплава оксида этого элемента:

2Al 2 O 3 = 4Al + 3O 2

Однако из-за небольшого выхода продукта, чаще используют способ получения алюминия электролизом смеси Na 3 и Al 2 O 3 . Реакция протекает при нагревании до 960С и в присутствии катализаторов – фторидов (AlF 3 , CaF 2 и др.), при этом на выделение алюминия происходит на катоде, а на аноде выделяется кислород.

Алюминий способен взаимодействовать с водой после удаления с его поверхности оксидной пленки (1), взаимодействовать с простыми веществами (кислородом, галогенами, азотом, серой, углеродом) (2-6), кислотами (7) и основаниями (8):

2Al + 6H 2 O = 2Al(OH) 3 +3H 2 (1)

2Al +3/2O 2 = Al 2 O 3 (2)

2Al + 3Cl 2 = 2AlCl 3 (3)

2Al + N 2 = 2AlN (4)

2Al +3S = Al 2 S 3 (5)

4Al + 3C = Al 4 C 3 (6)

2Al + 3H 2 SO 4 = Al 2 (SO 4) 3 + 3H 2 (7)

2Al +2NaOH +3H 2 O = 2Na + 3H 2 (8)

Кальций

В свободном виде Ca – серебристо-белый металл. При нахождении на воздухе мгновенно покрывается желтоватой пленкой, которая представляет собой продукты его взаимодействия с составными частями воздуха. Кальций – достаточно твердый металл, имеет кубическую гранецентрированную кристаллическую решетку.

Электронная конфигурация внешнего энергетического уровня – 4s 2 . В своих соединениях кальций проявляет степень окисления равную «+2».

Кальций получают электролизом расплавов солей, чаще всего – хлоридов:

CaCl 2 = Ca + Cl 2

Кальций способен растворяются в воде с образованием гидроксидов, проявляющих сильные основные свойства (1), реагировать с кислородом (2), образуя оксиды, взаимодействовать с неметаллами (3 -8), растворяться в кислотах (9):

Ca + H 2 O = Ca(OH) 2 + H 2 (1)

2Ca + O 2 = 2CaO (2)

Ca + Br 2 =CaBr 2 (3)

3Ca + N 2 = Ca 3 N 2 (4)

2Ca + 2C = Ca 2 C 2 (5)

2Ca + 2P = Ca 3 P 2 (7)

Ca + H 2 = CaH 2 (8)

Ca + 2HCl = CaCl 2 + H 2 (9)

Железо и его соединения

Железо – металл серого цвета. В чистом виде оно довольно мягкое, ковкое и тягучее. Электронная конфигурация внешнего энергетического уровня – 3d 6 4s 2 . В своих соединениях железо проявляет степени окисления «+2» и «+3».

Металлическое железо реагирует с водяным паром, образуя смешанный оксид (II, III) Fe 3 O 4:

3Fe + 4H 2 O (v) ↔ Fe 3 O 4 + 4H 2

На воздухе железо легко окисляется, особенно в присутствии влаги (ржавеет):

3Fe + 3O 2 + 6H 2 O = 4Fe(OH) 3

Как и другие металлы железо вступает в реакции с простыми веществами, например, галогенами (1), растворяется в кислотах (2):

Fe + 2HCl = FeCl 2 + H 2 (2)

Железо образует целый спектр соединений, поскольку проявляет несколько степеней окисления: гидроксид железа (II), гидроксид железа (III), соли, оксиды и т.д. Так, гидроксид железа (II) можно получить при действии растворов щелочей на соли железа (II) без доступа воздуха:

FeSO 4 + 2NaOH = Fe(OH) 2 ↓ + Na 2 SO 4

Гидроксид железа (II) растворим в кислотах и окисляется до гидроксида железа (III) в присутствии кислорода.

Соли железа (II) проявляют свойства восстановителей и превращаются в соединения железа (III).

Оксид железа (III) нельзя получить по реакции горения железа в кислороде, для его получения необходимо сжигать сульфиды железа или прокаливать другие соли железа:

4FeS 2 + 11O 2 = 2Fe 2 O 3 +8SO 2

2FeSO 4 = Fe 2 O 3 + SO 2 + 3H 2 O

Соединения железа (III) проявляют слабые окислительные свойства и способны вступать в ОВР с сильными восстановителями:

2FeCl 3 + H 2 S = Fe(OH) 3 ↓ + 3NaCl

Производство чугуна и стали

Стали и чугуны – сплавы железа с углеродом, причем содержание углерода в стали до 2%, а в чугуне 2-4%. Стали и чугуны содержат легирующие добавки: стали– Cr, V, Ni, а чугун – Si.

Выделяют различные типы сталей, так, по назначению выделяют конструкционные, нержавеющие, инструментальные, жаропрочные и криогенные стали. По химическому составу выделяют углеродистые (низко-, средне- и высокоуглеродистые) и легированные (низко-, средне- и высоколегированные). В зависимости от структуры выделяют аустенитные, ферритные, мартенситные, перлитные и бейнитные стали.

Стали нашли применение во многих отраслях народного хозяйства, таких как строительная, химическая, нефтехимическая, охрана окружающей среды, транспортная энергетическая и другие отрасли промышленности.

В зависимости от формы содержания углерода в чугуне — цементит или графит, а также их количества различают несколько типов чугуна: белый (светлый цвет излома из-за присутствия углерода в форме цементита), серый (серый цвет излома из-за присутствия углерода в форме графита), ковкий и жаропрочный. Чугуны очень хрупкие сплавы.

Области применения чугунов обширны – из чугуна изготавливают художественные украшения (ограды, ворота), корпусные детали, сантехническое оборудование, предметы быта (сковороды), его используют в автомобильной промышленности.

Примеры решения задач

ПРИМЕР 1

Задание Сплав магния и алюминия массой 26,31 г растворили в соляной кислоте. При этом выделилось 31,024 л бесцветного газа. Определите массовые доли металлов в сплаве.
Решение Вступать в реакцию с соляной кислотой способны оба металла, в результате чего выделяется водород:

Mg +2HCl = MgCl 2 + H 2

2Al +6HCl = 2AlCl 3 + 3H 2

Найдем суммарное число моль выделившегося водорода:

v(H 2) =V(H 2)/V m

v(H 2) = 31,024/22,4 = 1,385 моль

Пусть количество вещества Mg – х моль, а Al –y моль. Тогда, исходя из уравнений реакций можно записать выражение для суммарного числа моль водорода:

х + 1,5у = 1,385

Выразим массу металлов, находящихся в смеси:

Тогда, масса смеси будет выражаться уравнением:

24х + 27у = 26,31

Получили систему уравнений:

х + 1,5у = 1,385

24х + 27у = 26,31

Решим её:

33,24 -36у+27у = 26,31

v(Al) = 0,77 моль

v(Mg) = 0,23моль

Тогда, масса металлов в смеси:

m(Mg) = 24×0,23 = 5,52 г

m(Al) = 27×0,77 = 20.79 г

Найдем массовые доли металлов в смеси:

ώ =m(Me)/m sum ×100%

ώ(Mg) = 5,52/26,31 ×100%= 20,98%

ώ(Al) = 100 – 20,98 = 79,02%

Ответ Массовые доли металлов в сплаве: 20,98%, 79,02%

Металлы, легко вступающие в реакции, называются активными металлами. К ним относятся щелочные, щелочноземельные металлы и алюминий.

Положение в таблице Менделеева

Металлические свойства элементов ослабевают слева направо в периодической таблице Менделеева. Поэтому наиболее активными считаются элементы I и II групп.

Рис. 1. Активные металлы в таблице Менделеева.

Все металлы являются восстановителями и легко расстаются с электронами на внешнем энергетическом уровне. У активных металлов всего один-два валентных электрона. При этом металлические свойства усиливаются сверху вниз с возрастанием количества энергетических уровней, т.к. чем дальше электрон находится от ядра атома, тем легче ему отделиться.

Наиболее активными считаются щелочные металлы:

  • литий;
  • натрий;
  • калий;
  • рубидий;
  • цезий;
  • франций.

К щелочноземельным металлам относятся:

  • бериллий;
  • магний;
  • кальций;
  • стронций;
  • барий;
  • радий.

Узнать степень активности металла можно по электрохимическому ряду напряжений металлов. Чем левее от водорода расположен элемент, тем более он активен. Металлы, стоящие справа от водорода, малоактивны и могут взаимодействовать только с концентрированными кислотами.

Рис. 2. Электрохимический ряд напряжений металлов.

К списку активных металлов в химии также относят алюминий, расположенный в III группе и стоящий левее водорода. Однако алюминий находится на границе активных и среднеактивных металлов и не реагирует с некоторыми веществами при обычных условиях.

Свойства

Активные металлы отличаются мягкостью (можно разрезать ножом), лёгкостью, невысокой температурой плавления.

Основные химические свойства металлов представлены в таблице.

Реакция

Уравнение

Исключение

Щелочные металлы самовозгораются на воздухе, взаимодействуя с кислородом

K + O 2 → KO 2

Литий реагирует с кислородом только при высокой температуре

Щелочноземельные металлы и алюминий на воздухе образуют оксидные плёнки, а при нагревании самовозгораются

2Ca + O 2 → 2CaO

Реагируют с простыми веществами, образуя соли

Ca + Br 2 → CaBr 2 ;
- 2Al + 3S → Al 2 S 3

Алюминий не вступает в реакцию с водородом

Бурно реагируют с водой, образуя щёлочи и водород


- Ca + 2H 2 O → Ca(OH) 2 + H 2

Реакция с литием протекает медленно. Алюминий реагирует с водой только после удаления оксидной плёнки

Реагируют с кислотами, образуя соли

Ca + 2HCl → CaCl 2 + H 2 ;

2K + 2HMnO 4 → 2KMnO 4 + H 2

Взаимодействуют с растворами солей, сначала реагируя с водой, а затем с солью

2Na + CuCl 2 + 2H 2 O:

2Na + 2H 2 O → 2NaOH + H 2 ;
- 2NaOH + CuCl 2 → Cu(OH) 2 ↓ + 2NaCl

Активные металлы легко вступают в реакции, поэтому в природе находятся только в составе смесей - минералов, горных пород.

Рис. 3. Минералы и чистые металлы.

Что мы узнали?

К активным металлам относятся элементы I и II групп - щелочные и щелочноземельные металлы, а также алюминий. Их активность обусловлена строением атома - немногочисленные электроны легко отделяются от внешнего энергетического уровня. Это мягкие лёгкие металлы, быстро вступающие в реакцию с простыми и сложными веществами, образуя оксиды, гидроксиды, соли. Алюминий находится ближе к водороду и для его реакции с веществами требуются дополнительные условия - высокие температуры, разрушение оксидной плёнки.

Тест по теме

Оценка доклада

Средняя оценка: 4.4 . Всего получено оценок: 388.

Электрохимические системы

Общая характеристика

Электрохимия - раздел химии, которая изучает процессы возникновения разности потенциалов и превращение химической энергии в электрическую (гальванические элементы), а также осуществление химических реакций за счет затраты электрической энергии (электролиз). Эти два процесса, имеющие общую природу нашли широкое применение в современной технике.

Гальванические элементы используются как автономные и малогабаритные источники энергии для машин, радиотехнических устройств и приборов управления. При помощи электролиза получают различные вещества, обрабатывают поверхности, создают изделия нужной формы.

Электрохимические процессы не всегда служат на пользу человеку, а иногда приносят большой вред, вызывая усиленную коррозию и разрушение металлических конструкций. Чтобы умело использовать электрохимические процессы и бороться с нежелательными явлениями, их надо изучить и уметь регулировать.

Причиной возникновения электрохимических явлений служит переход электронов или изменение степени окисления атомов веществ, участвующих в электрохимических процессах, то есть окислительно-восстановительные реакции, протекающие в гетерогенных системах. В окислительно-восстановительных реакциях электроны непосредственно переходят от восстановителя к окислителю. Если процессы окисления и восстановления пространственно разделить, а электроны направить по металлическому проводнику, то такая система будет представлять собой гальванический элемент. Причиной возникновения и протекания электрического тока в гальваническом элементе является разность потенциалов.

Электродный потенциал. Измерение электродных потенциалов

Если взять пластину какого либо металла и опустить ее в воду, то ионы поверхностного слоя под действием полярных молекул воды отрываются и гидратированными переходят в жидкость. В результате такого перехода жидкость заряжается положительно, а металл отрицательно, поскольку на нем появляется избыток электронов. Накопление ионов металла в жидкости начинает тормозить растворение металла. Устанавливается подвижное равновесие

Ме 0 + mН 2 О = Ме n + × m H 2 O + ne -

Состояние равновесия зависит как от активности металла так и от концентрации его ионов в растворе. В случае активных металлов, стоящих в ряду напряжений до водорода, взаимодействие с полярными молекулами воды заканчивается отрывом от поверхности положительных ионов металла и переходом гидратировнных ионов в раствор (рис. б). Металл заряжается отрицательно. Процесс является окислением. По мере увеличения концентрации ионов у поверхности становится вероятным обратный процесс - восстановление ионов. Электростатическое притяжение между катионами в растворе и избыточными электронами на поверхности образует двойной электрический слой. Это приводит к возникновению на границе соприкосновения металла и жидкости определенной разности потенциалов, или скачка потенциала. Разность потенциалов, возникающую между металлом и окружающей его водной средой, называют электродным потенциалом. При погружении металла в раствор соли этого металла равновесие смещается. Повышение концентрации ионов данного металла в растворе облегчает процесс перехода ионов из раствора в металл. Металлы, ионы которых обладают значительной способностью к переходу в раствор, будут заряжаться и в таком растворе положительно, но в меньшей степени, чем в чистой воде.

Для неактивных металлов равновесная концентрация ионов металла в растворе очень мала. Если такой металл погрузить в раствор соли этого металла, то положительно заряженные ионы выделяются на металле с большей скоростью, чем происходит переход ионов из металла в раствор. Поверхность металла получит положительный заряд, а раствор отрицательный из-за избытка анионов соли. И в этом случае на границе металл - раствор возникает двойной электрический слой, следовательно, определенная разность потенциалов (рис. в). В рассмотренном случае электродный потенциал положительный.

Рис. Процесс перехода иона из металла в раствор:

а – равновесие; б – растворение; в – осаждение

Потенциал каждого электрода зависит от природы металла, концентрации его ионов в растворе и температуры. Если металл опустить в раствор его соли, содержащей один моль-ион металла на 1 дм 3 (активность которого равна 1), то электродный потенциал будет постоянной величиной при температуре 25 о С и давлении 1 атм. Такой потенциал называется стандартным электродным потенциалом (Е о).

Ионы металла, имеющие положительный заряд, проникая в раствор и перемещаясь в поле потенциала границы раздела металл-раствор, затрачивают энергию. Эта энергия компенсируется работой изотермического расширения от большей концентрации ионов на поверхности к меньшей в растворе. Положительные ионы накапливаются в приповерхностном слое до концентрации с о , а затем уходят в раствор, где концентрация свободных ионов с . Работа электрического поля ЕnF равна изотермической работе расширения RTln(с o /с). Приравняв оба выражения работы можно вывести величину потенциала

Еn F = RTln(с o /с), -Е = RTln(с/с о)/nF,

где Е – потенциал металла, В; R – универсальная газовая постоянная, Дж/моль К; Т – температура, K; n – заряд иона; F – число Фарадея; с – концентрация свободных ионов;

с о – концентрация ионов в поверхностном слое.

Непосредственно измерить величину потенциала не представляется возможным, так как невозможно экспериментально определить с о. Опытным путем определяют величины электродных потенциалов относительно величины другого электрода, потенциал которого условно принимают равным нулю. Таким стандартным электродом или электродом сравнения является нормальный водородный электрод (н.в.э.) . Устройство водородного электрода показано на рисунке. Он состоит из платиновой пластинки, покрытой электролитически осаждённой платиной. Электрод погружен в 1М раствор серной кислоты (активность ионов водорода равна 1 моль/дм 3) и омывается струей газообразного водорода под давлением 101 кПа и Т = 298 К. При насыщении платины водородом на поверхности металла устанавливается равновесие, суммарный процесс выражается уравнением

2Н + +2е ↔ Н 2 .

Если пластинку металла, погруженного в 1М раствор соли этого металла, соединить внешним проводником со стандартным водородным электродом, а растворы электролитическим ключом, то получим гальванический элемент (рис. 32). Электродвижущая сила этого гальванического элемента будет являться величиной стандартного электродного потенциала данного металла (Е о ).

Схема измерения стандартного электродного потенциала

относительно водородного электрода

Взяв в качестве электрода цинк находящийся в 1 М растворе сульфата цинка и соединив его с водородным электродом, получим гальванический элемент, схему которого запишем следующим образом

(-) Zn/Zn 2+ // 2H + /H 2 , Pt (+).

В схеме одна черта означает границу раздела между электродом и раствором, две черты – границу между растворами. Анод записывается слева, катод справа. В таком элементе осуществляется реакция Zn о + 2H + = Zn 2+ + Н 2 , а электроны по внешней цепи переходят от цинкового к водородному электроду. Стандартный электродный потенциал цинкового электрода (-0,76 В).

Взяв в качестве электрода медную пластинку, при указанных условиях в сочетании со стандартным водородным электродом, получим гальванический элемент

(-) Pt, H 2 /2H + //Cu 2+ /Cu (+).

В этом случае протекает реакция: Cu 2+ + H 2 = Cu о + 2H + . Электроны по внешней цепи перемещаются от водородного электрода к медному электроду. Стандартный электродный потенциал медного электрода (+0,34 В).

Ряд стандартных электродных потенциалов (напряжений). Уравнение Нернста

Располагая металлы в порядке возрастания их стандартных электродных потенциалов, получают ряд напряжений Николая Николаевича Бекетова (1827-1911), или ряд стандартных электродных потенциалов. Числовые значения стандартных электродных потенциалов для ряда технически важных металлов приведены в таблице.

Ряд напряжений металлов

Ряд напряжений характеризует некоторые свойства металлов:

1. Чем меньшее значение имеет электродный потенциал металла, тем он химически активнее, легче окисляется и труднее восстанавливается из своих ионов. Активные металлы в природе существуют только в виде соединений Na, K, ..., встречаются в природе, как в виде соединений, так и в свободном состоянии Cu, Ag, Hg; Au, Pt - только в свободном состоянии;

2. Металлы, имеющие более отрицательный электродный потенциал, чем магний, вытесняют водород из воды;

3. Металлы, стоящие в ряду напряжений до водорода, вытесняют водород из растворов разбавленных кислот (анионы которых не проявляют окислительных свойств);

4. Каждый металл ряда, не разлагающий воду, вытесняет металлы, имеющие более положительные значения электродных потенциалов из растворов их солей;

5. Чем больше отличаются металлы значениями электродных потенциалов, тем большее значение э.д.с. будет иметь построенный из них гальванический элемент.

Зависимость величины электродного потенциала (Е) от природы металла, активности его ионов в растворе и температуры выражается уравнением Нернста

Е Ме = Е о Ме + RTln(a Ме n +)/nF,

где Е о Ме – стандартный электродный потенциал металла, a Me n + – активность ионов металла в растворе. При стандартной температуре 25 о С, для разбавленных растворов заменяя активность (а) концентрацией (с), натуральный логарифм десятичным и подставляя значения R , T и F, получим

Е Ме = Е о Ме + (0,059/n)lgс.

Например, для цинкового электрода, помещенного в раствор своей соли, концентрацию гидратированных ионов Zn 2+ × mH 2 O сокращенно обозначим Zn 2+ , тогда

Е Zn = Е о Zn + (0,059/n) lg[ Zn 2+ ].

Если = 1 моль/дм 3 , то Е Zn = Е о Zn .

Гальванические элементы, их электродвижущая сила

Два металла, погруженные в растворы своих солей, соединенные проводником, образуют гальванический элемент. Первый гальванический элемент был изобретен Александром Вольтом в 1800 г. Элемент состоял из медных и цинковых пластинок, разделенных сукном, смоченным раствором серной кислоты. При последовательном соединении большого числа пластинок элемент Вольта обладает значительной электродвижущей силой (э.д.с.).

Возникновение электрического тока в гальваническом элементе обусловлено разностью электродных потенциалов взятых металлов и сопровождается химическими превращениями, протекающими на электродах. Рассмотрим работу гальванического элемента на примере медно-цинкового элемента (Дж. Даниэля – Б.С. Якоби).

Схема медно-цинкового гальванического элемента Даниэля-Якоби

На цинковом электроде, опущенном в раствор сульфата цинка (с = 1 моль/дм 3), происходит окисление цинка (растворение цинка) Zn о - 2e = Zn 2+ . Электроны поступают во внешнюю цепь. Zn – источник электронов. Источник электронов принято считать отрицательным электродом – анодом. На электроде из меди, погруженном в раствор сульфата меди (с = 1 моль/дм 3) происходит восстановление ионов металла. Атомы меди осаждаются на электроде Cu 2+ + 2e = Cu о. Медный электрод положительный. Он является катодом. Одновременно часть ионов SO 4 2- переходят через солевой мостик в сосуд с раствором ZnSO 4 . Сложив уравнения процессов, протекающих на аноде и катоде, получим суммарное уравнение

Борис Семенович Якоби (Мориц Герман)(1801-1874)

или в молекулярной форме

Это обычная окислительно - восстановительная реакция, протекающая на границе металл-раствор. Электрическая энергия гальванического элемента получается за счёт химической реакции. Рассмотренный гальванический элемент можно записать в виде краткой электрохимической схемы

(-) Zn/Zn 2+ //Cu 2+ /Cu (+).

Необходимым условием работы гальванического элемента является разность потенциалов, она называется электродвижущей силой гальванического элемента (э.д.с.) . Э.д.с. всякого работающего гальванического элемента величина положительная. Для вычисления э.д.с. гальванического элемента надо из величины более положительного потенциала отнять величину менее положительного потенциала. Так э.д.с. медно–цинкового гальванического элемента при стандартных условиях (t = 25 о С, с = 1 моль/дм 3 , Р = 1 атм) равна разности между стандартными электродными потенциалами меди (катода) и цинка (анода), то есть

э.д.с. = Е о С u 2+ / Cu - Е o Zn 2+ / Zn = +0,34 В – (-0,76 В) = +1,10 В.

В паре с цинком ион Cu 2+ восстанавливается.

Необходимую для работы разность электродных потенциалов можно создать, используя один и тот же раствор разной концентрации и одинаковые электроды. Такой гальванический элемент называется концентрационным , а работает он за счет выравнивания концентраций раствора. Примером может служить элемент, составленный из двух водородных электродов

Pt, H 2 / H 2 SO 4 (с`) // H 2 SO 4 (с``) /H 2, Pt,

где с` = `; с`` = ``.

Если р = 101 кПа, с` < с``, то его э.д.с. при 25 о С определяется уравнением

Е = 0,059lg(с``/с`).

При с` = 1 моль-ион/дм 3 э.д.с. элемента определяется концентрацией водородных ионов во втором растворе, то есть Е = 0,059lgс`` = -0,059 pH.

Определение концентрации ионов водорода и, следовательно, рН среды измерением э.д.с. соответствующего гальванического элемента называется потенциометрией.

Аккумуляторы

Аккумуляторами называются гальванические элементы многоразового и обратимого действия. Они способны превращать накопленную химическую энергию в электрическую при разрядке, а электрическую в химическую, создавая запас ее в процессе зарядки. Так как э.д.с. аккумуляторов невелика, при эксплуатации их обычно соединяют в батареи.

Свинцовый аккумулятор . Свинцовый аккумулятор состоит из двух перфорированных свинцовых пластин, одна из которых (отрицательная) после зарядки содержит наполнитель - губчатый активный свинец, а другая (положительная) - диоксид свинца. Обе пластины погружены в 25 - 30 % раствор серной кислоты (рис. 35). Схема аккумулятора

(-) Pb/ p -p H 2 SO 4 / PbO 2 /Pb(+).

Перед зарядкой в поры свинцовых электродов вмазывается паста, содержащая помимо органического связующего оксид свинца PbO. В результате взаимодействия оксида свинца с серной кислотой в порах электродных пластин образуется сульфат свинца

PbО + H 2 SO 4 = PbSO 4 + H 2 O.

Аккумуляторы заряжают, пропуская электрический ток

Процесс разрядки

Суммарно процессы, происходящие при зарядке и разрядке аккумулятора, можно представить следующим образом

При зарядке аккумулятора плотность электролита (серной кислоты) увеличивается, а при разрядке уменьшается. По плотности электролита судят о степени разряженности аккумулятора. Э.д.с. свинцового аккумулятора 2,1 В.

Преимущества свинцового аккумулятора - большая электрическая емкость, устойчивость в работе, большое количество циклов (разрядка- зарядка). Недостатки - большая масса и, следовательно, малая удельная ёмкость, выделение водорода при зарядке, не герметичность при наличии концентрированного раствора серной кислоты. В этом отношении лучше щелочные аккумуляторы.

Щелочные аккумуляторы. К ним относятся кадмиево-никеливые и железо-никелиевые аккумуляторы Т. Эдисона.

Схемы аккумулятора Эдисона и свинцового аккумулятора

Томас Эдисон(1847-1931)

Они сходны между собой. Различие состоит в материале пластин отрицательного электрода. В первом случае они кадмиевые, во втором железные. Электролитом служит раствор КОН ω = 20 %. Наибольшее практическое значение имеют кадмиево-никелевые аккумуляторы. Схема кадмиево-никелевого аккумулятора

(-) Cd / раствор KOH /Ni 2 O 3 /Ni (+).

Работа кадмиевого-никелевого аккумулятора основана на окислительно-восстановительной реакции с участием Ni 3+

Э.д.с. заряженного кадмиево-никелевого аккумулятора составляет 1.4 В.

В таблице представлены характеристики аккумулятора Эдисона и свинцового аккумулятора.

Разность потенциалов «вещество электрода – раствор» как раз и служит количествен­ной характеристикой способности вещества (как металлов, так и неметаллов) переходить в раствор в виде ионов, т.е. характери­ стикой ОВ способности иона и соответствующего ему вещества.

Такую разность потенциалов называют электродным потенциалом .

Однако прямых методов измерений такой разности потенциалов не существует, поэтому условились их определять по отношению к так называемому стандартному водородному электроду, потенци­ ал которого условно принят за ноль (часто его также называют электродом сравнения). Стандартный водородный электрод состоит из платиновой пластинки, погруженной в раствор кислоты с кон­ центрацией ионов Н + 1 моль/л и омываемой струей газообразного водорода при стандартных условиях .

Возникновение потенциала на стандартном водородном электроде можно представить себе следующим образом. Газообразный водород, адсорбируясь платиной, переходит в атомарное состояние:

H 2 2H .

Между атомарным водородом, образующимся на поверхности пластины, ионами водорода в растворе и платиной (электроны!) реализуется состояние динамического равновесия:

H Н + + е.

Суммарный процесс выражается уравнением:

Н 2 2Н + + 2е.

Платина не принимает участия в окислительно – восстанов ительном процессе, а является лишь носителем атомарного водорода.

Если пластинку некоторого металла, погруженную в раствор его соли с концентрацией ионов металла, равной 1 моль/л, соединить со стандартным водородным электродом, то получится гальванический элемент. Электродвижущая сила этого элемента (ЭДС), измеренная при 25° С, и характеризует стандартный элек­тродный потенциал металла, обозначаемый обычно как Е 0 .

По отношению к системе Н 2 /2Н + некоторые вещества будут вести себя как окислители, другие - как восстановители. В настоящее время получены стандартные потенциалы практически всех металлов и многих неметаллов, которые характеризуют относительную способность восстановителей или окислителей к от­даче или захвату электронов.

Потенциалы электродов, выступающих как восстановители по отношению к водороду, имеют знак “-“, а знаком “+” отмечены потенциалы электродов, являющихся окислителями.

Если расположить металлы в порядке воз­растания их стандартных электродных потенциалов, то образует­ся так называемый электрохимический ряд напряжений метал­лов :

Li , Rb , К, Ва, Sr , Са, N а, М g , А l , М n , Zn , С r , F е, С d , Со, N i , Sn , Р b , Н, Sb , В i , С u , Hg , А g , Р d , Р t , А u .

Ряд напряжений характеризует химические свойства металлов.

1. Чем более отрицателен электродный потенциал металла, тем больше его восстановительная способность.

2. Каждый металл способен вытеснять (восстанавливать) из растворов солей те металлы, которые стоят в ряду напряжений металлов после него. Исключениями являются лишь щелочные и щелочноземельные металлы, которые не будут восстанавливать ионы других металлов из растворов их солей. Это связано с тем, что в этих случаях с большей скоростью протекают реакции вза­имодействия металлов с водой.

3. Все металлы, имеющие отрицательный стандартный элек­тродный потенциал, т.е. находящиеся в ряду напряжений метал­лов левее водорода, способны вытеснять его из растворов кислот.

Необходимо отметить, что представленный ряд характеризует поведение металлов и их солей только в водных растворах, поскольку потенциалы учитывают особенности взаимодействия того или иного иона с молекулами растворителя. Именно поэтому электрохимический ряд начинается литием, тогда как более активные в химическом отношении рубидий и калий находятся правее лития. Это связано с исключительно высокой энергией про­цесса гидратации ионов лития по сравнению с ионами других щелочных металлов.

Алгебраическое значение стандартного окислительно-восстановительного потенциала характеризует окислительную активность соответствующей окисленной формы. Поэтому сопоставление значений стандартных окислительно-восстановительных потенциалов позволяет ответить на вопрос: протекает ли та или иная окислительно-восстановительная реакция?

Так, все полуреакции окисления галогенид-ионов до свободных галогенов

2 Cl – – 2 e = С l 2 Е 0 = -1,36 В (1)

2 Br – -2е = В r 2 E 0 = -1,07 В (2)

2I – -2 е = I 2 E 0 = -0,54 В (3)

могут быть реализованы в стандартных условиях при использовании в качестве окислителя оксида свинца (IV ) (Е 0 = 1,46 В) или перманганата калия (Е 0 = 1,52 В). При использовании дихромата калия (E 0 = 1,35 В) удается осуществить только реакции (2) и (3). Наконец, использование в качестве окислителя азотной кислоты (E 0 = 0,96 В) позволяет осуществить только полуреакцию с участием иодид-ионов (3).

Таким образом, количественным критерием оценки возможности протекания той или иной окислительно-восстановительной реакции является положительное значение разности стандартных окислительно-восстановительных потенциалов полуреакций окисления и восстановления.

Разделы: Химия , Конкурс «Презентация к уроку»

Класс: 11

Презентация к уроку



















Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цели и задачи:

  • Обучающая: Рассмотрение химической активности металлов исходя из положения в периодической таблице Д.И. Менделеева и в электрохимическом ряду напряжения металлов.
  • Развивающая: Способствовать развитию слуховой памяти, умению сопоставлять информацию, логически мыслить и объяснять происходящие химические реакции.
  • Воспитательная: Формируем навык самостоятельной работы, умение аргументировано высказывать свое мнение и выслушивать одноклассников, воспитываем в ребятах чувство патриотизма и гордость за соотечественников.

Оборудование: ПК с медиапроектором, индивидуальные лаборатории с набором химических реактивов, модели кристаллических решеток металлов.

Тип урока : с применением технологии развития критического мышления.

Ход урока

I. Стадия вызов.

Актуализация знаний по теме, пробуждение познавательной активности.

Блеф-игра: «Верите ли Вы, что…». (Слайд 3)

  1. Металлы занимают верхний левый угол в ПСХЭ.
  2. В кристаллах атомы металла связаны металлической связью.
  3. Валентные электроны металлов крепко связаны с ядром.
  4. У металлов, стоящих в главных подгруппах (А), на внешнем уровне обычно 2 электрона.
  5. В группе сверху вниз происходит увеличение восстановительных свойств металлов.
  6. Чтобы оценить реакционную способность металла в растворах кислот и солей, достаточно посмотреть в электрохимический ряд напряжения металлов.
  7. Чтобы оценить реакционную способность металла в растворах кислот и солей, достаточно посмотреть в периодическую таблицу Д.И. Менделеева

Вопрос классу? Что обозначает запись? Ме 0 – ne —> Me +n (Слайд 4)

Ответ: Ме0 – является восстановителем, значит вступает во взаимодействие с окислителями. В качестве окислителей могут выступать:

  1. Простые вещества (+О 2 , Сl 2 , S…)
  2. Сложные вещества (Н 2 О, кислоты, растворы солей…)

II. Осмысление новой информации.

В качестве методического приема предлагается составление опорной схемы.

Вопрос классу? От каких факторов зависят восстановительные свойства металлов? (Слайд 5)

Ответ: От положения в периодической таблице Д.И.Менделеева или от положения в электрохимическом ряду напряжения металлов.

Учитель вводит понятия: химическая активность и электрохимическая активность .

Пред началом объяснения ребятам предлагается сравнить активность атомов К и Li поположению в периодической таблице Д.И. Менделеева и активность простых веществ, образованными данными элементами по положению в электрохимическом ряду напряжения металлов. (Слайд 6)

Возникает противоречие: В соответствии с положением щелочных металлов в ПСХЭ и согласно закономерностям изменения свойств элементов в подгруппе активность калия больше, чем лития. По положению в ряду напряжения наиболее активным является литий.

Новый материал. Учитель объясняет в чем отличие химической от электрохимической активности и объясняет, что электрохимический ряд напряжений отражает способность металла переходить в гидратированный ион, где мерой активности металла является энергия, которая складывается из трех слагаемых (энергии атомизации, энергии ионизации и энергии гидротации). Материал записываем в тетрадь. (Слайды 7-10)

Вместе записываем в тетрадь вывод: Чем меньше радиус иона, тем большее электрическое поле вокруг него создается, тем больше энергии выделяется при гидротации, следовательно более сильные восстановительные свойства у этого металла в реакциях.

Историческая справка: выступление ученика о создании Бекетовым вытеснительного ряда металлов. (Слайд 11)

Действие электрохимического ряда напряжения металлов ограничивается только реакциями металлов с растворами электролитов (кислот, солей).

Памятка:

  1. Уменьшаются восстановительные свойства металлов при реакциях в водных растворах в стандартных условиях (250°С, 1 атм.);
  2. Металл, стоящий левее, вытесняет металл, стоящий правее из их солей в растворе;
  3. Металлы, стоящие до водорода, вытесняют его из кислот в растворе (искл.: HNO3);
  4. Ме (до Al) + Н 2 О —> щелочь + Н 2
    Другие Ме (до Н 2) + Н 2 О —> оксид + Н 2 (жесткие условия)
    Ме (после Н 2) + Н 2 О —> не реагируют

(Слайд 12)

Ребятам раздаются памятки.

Практическая работа: «Взаимодействие металлов с растворами солей» (Слайд 13)

Осуществите переход:

  • CuSO 4 —> FeSO 4
  • CuSO 4 —> ZnSO 4

Демонстрация опыта взаимодействия меди и раствора нитрата ртути (II).

III. Рефлексия, размышление.

Повторяем: в каком случае пользуемся таблицей Менделеева, а в каком случае необходим ряд напряжение металлов. (Слайды 14-15) .

Возвращаемся к начальным вопросам урока. На экране высвечиваем вопрос 6 и 7. Анализируем какое высказывание не верное. На экране – ключ (проверка задания 1). (Слайд 16) .

Подводим итоги урока :

  • Что нового узнали?
  • В каком случае возможно пользоваться электрохимическим рядом напряжения металлов?

Домашнее задание : (Слайд 17)

  1. Повторить из курса физики понятие «ПОТЕНЦИАЛ»;
  2. Закончить уравнение реакции, написать уравнения электронного баланса: Сu + Hg(NO 3) 2 →
  3. Даны металлы (Fe, Mg, Pb, Cu) – предложите опыты, подтверждающие расположение данных металлов в электрохимическом ряду напряжения.

Оцениваем результаты за блеф-игру, работу у доски, устные ответы, сообщение, практическую работу.

Используемая литература:

  1. О.С. Габриэлян, Г.Г. Лысова, А.Г. Введенская «Настольная книга для учителя. Химия 11 класс, часть II» Издательство Дрофа.
  2. Н.Л. Глинка «Общая химия».