Взрывчатые вещества: принцип действия и основные виды. Взрывчатые вещества Самая мощная взрывное вещество

Взрывчатыми веществами (ВВ) называются неустойчивые химические соединения или смеси, чрезвычайно быстро переходящие под воздействием определенного импульса в другие устойчивые вещества с выделением значительного количества тепла и большого объема газообразных продуктов, которые находятся под очень большим давлением и, расширяясь, выполняют ту или иную механическую работу.

Современные взрывчатые вещества представляют собой или химические соединения (гексоген, тротил и др .), или механические смеси (аммиачно-селитренные и нитроглицериновые ВВ ).

Химические соединения получаются обработкой азотной кислотой (нитрованием) различных углеводородов, т. е. введением в молекулу углеводорода таких веществ, как азот и кислород.

Механические смеси изготовляются смешением веществ, богатых кислородом, с веществами, богатыми углеродом.

В обоих случаях кислород находится в связанном состоянии с азотом или хлором (исключение составляют оксиликвиты , где кислород находится в свободном несвязанном состоянии).

В зависимости от количественного содержания кислорода во взрывчатом веществе окисление горючих элементов в процессе взрывчатого превращения может быть полным или неполным , а иногда кислород может даже оставаться в избытке. В соответствии с этим различают взрывчатые вещества с избыточным (положительным), нулевым и недостаточным (отрицательным) кислородным балансом .

Наиболее выгодными являются взрывчатые вещества, имеющие нулевой кислородный баланс, так как углерод полностью окисляется до СО 2 , а водород до Н 2 О, в результате чего выделяется максимально возможное для данного взрывчатого вещества количество тепла. Примером такого взрывчатого вещества может служить динафталит , представляющий собой смесь аммиачной селитры и динитронафталина:

При избыточном кислородном балансе остающийся неиспользованным кислород вступает в соединение с азотом, образуя весьма ядовитые окислы азота, которые поглощают часть тепла, что уменьшает количество энергии, выделяемой при взрыве. Примером взрывчатого вещества с избыточным кислородным балансом является нитроглицерин :

С другой стороны, при недостаточном кислородном балансе не весь углерод переходит в углекислый газ; часть его окисляется только до окиси углерода. (СО) которая также ядовита, хотя и в меньшей степени, чем окислы азота. Кроме того, часть углерода может остаться в твердом виде. Оставшийся твердым углерод и неполное его окисление только до СО ведут к уменьшению выделяемой при взрыве энергии.

Действительно, при образовании одной грамм-молекулы окиси углерода выделяется тепла только 26 ккал/моль, тогда как при образовании грамм-молекулы углекислого газа 94 ккал/моль.

Примером взрывчатого вещества с отрицательным кислородным балансом может служить тротил :

В реальных условиях, когда продукты взрыва совершают механическую работу, происходят дополнительные (вторичные) химические реакции и действительный состав продуктов взрыва несколько отличается от приведенных расчетных схем, а количество ядовитых газов в продуктах взрыва изменяется.

Классификация взрывчатых веществ

Взрывчатые вещества могут находиться в газообразном, жидком и твердом.состоянии или в виде смесей твердых или жидких веществ с твердыми или газообразными веществами.

В настоящее время, когда число различных взрывчатых веществ весьма велико (тысячи наименований), деление их только по физическому состоянию совершенно недостаточно. Такое деление ничего не говорит ни о работоспособности (мощности) взрывчатых веществ, по которой можно было бы судить об области применения того или иного из них, ни о свойствах взрывчатых веществ, по которым можно было бы судить о степени опасности их в обращении и при хранении. Поэтому в настоящее время приняты три другие классификации взрывчатых веществ.

По первой классификации все взрывчатые вещества делятся по их мощности и области применения на:.

А) повышенной мощности (тэн, гексоген, тетрил);

Б) нормальной мощности (тротил, пикриновая кислота, пластиты," тетритол, скальные аммониты, аммониты, содержащие 50-60% тротила, и студенистые нитроглицериновые ВВ);

В) пониженной мощности (аммиачно-селитренные В В, кроме упомянутых выше, порошкообразные нитроглицериновые ВВ и хлоратиты).

3. Метательные взрывчатые вещества (дымные пороха и бездымные пироксилиновые и нитроглицериновые пороха).

В этой классификации приведены, конечно, не все наименования взрывчатых веществ, а только те из них, которые преимущественно применяются на взрывных работах. В частности, под общим наименованием аммиачно-селитренных ВВ содержатся десятки различных составов, имеющих каждый свое отдельное название.

Вторая классификация делит взрывчатое вещество по их химическому составу:

1. Нитросоединения ; в веществах этого вида содержатся две - четыре нитрогруппы (NO 2); к ним относятся тетрил, тротил, гексоген, тетритол, пикриновая кислота и динитронафталин, входящий в составы некоторых аммиачно-селитренных взрывчатых веществ.

2. Нитроэфиры ; в веществах этого вида содержится несколько нитратных групп (ONO 2). К ним относятся тэн, нитроглицериновые ВВ и бездымные пороха.

3. Соли азотной кислоты - вещества, содержащие группу NO 3 , основным представителем которых является аммиачная (аммонийная) селитра NH 4 NO 3 , входящая в состав всех аммиачно-селитренных взрывчатых веществ. К этой группе также относятся калиевая селитра KNO 3 - основа дымных порохов, и натриевая селитра NaNO 3 , входящая в состав нитроглицериновых ВВ.

4. Соли азотистоводородной кислоты (HN 3), из которых применяется только азид свинца.

5. Соли гремучей кислоты (HONC), из которых применяется только гремучая ртуть.

6. Соли хлорноватой кислоты, так называемые хлоратиты и перхлоратиты , - взрывчатые вещества, в которых основным компонентом - носителем кислорода является хлорат или перхлорат калия (КСlO 3 и КСlO 4); сейчас они применяются очень редко. Обособленно от этой классификации находится взрывчатое вещество, называемое оксиликвитом .

По химической структуре взрывчатого вещества можно судить и об основных его свойствах:

Чувствительности, стойкости, составе продуктов взрыва, следовательно, о мощности вещества, взаимодействии его с другими веществами (например, с материалом оболочки) и ряде других свойств.

От характера связи нитрогрупп с углеродом (в нитросоединениях и нитроэфирах) зависят чувствительность взрывчатого вещества к внешним воздействиям и их стойкость (сохранение взрывчатых свойств) в условиях хранения. Например, нитросоединеиия, в которых азот группы NO 2 связан непосредственно с углеродом (С-NO 2), менее чувствительны и более стойки, чем нитроэфиры, у которых азот связан с углеродом через один из кислородов группы ONO 2 (С-О-NO 2); такая связь менее прочна и делает ВВ более чувствительным и менее стойким.

Число нитрогрупп, содержащихся в составе ВВ, характеризует мощность последнего, а также степень его чувствительности к внешним воздействиям. Чем больше нитрогрупп в молекуле ВВ, тем оно мощнее и чувствительнее. Так, например, мононитротолуол (имеющий только одну нитрогруппу) является маслянистой жидкость, не обладающей взрывчатыми свойствами; динитротолуол , содержащий две нитрогруппы, - уже взрывчатое вещество, но со слабыми взрывчатыми характеристиками; и, наконец, тринитротолуол (тротил) , имеющий три нитрогруппы, представляет собой вполне удовлетворительное по мощности взрывчатое вещество.

Динитросоединения применяются ограниченно; в большинстве современных взрывчатых веществ содержатся три или четыре нитрогруппы.

Присутствие некоторых других групп в составе ВВ также влияет на его свойства. Например, дополнительный азот (N 3) в гексогене повышает чувствительность последнего. Метильная же группа (СН 3) в тротиле и тетриле способствует тому, что эти ВВ не взаимодействуют с металлами, тогда как гидроксильная группа (ОН) в пикриновой кислоте является причиной легкого взаимодействия вещества с металлами (кроме олова) и появления так называемых пикратов того или иного металла, которые представляют собой взрывчатые вещества, весьма чувствительные к удару и трению.

Взрывчатые вещества, полученные путем замещения водорода металлом в азотистоводородной или гремучей кислоте, обусловливают крайнюю непрочность внутримолекулярных связей и, следовательно, особую чувствительность этих веществ к механическим и тепловым внешним воздействиям.

На взрывных работах в быту принята третья классификация взрывчатых веществ:- по допустимости их использования в тех или иных условиях .

По этой классификации различают следующие три основные группы:

1. ВВ, допущенные для открытых работ.

2. ВВ, допущенные для подземных работ в условиях, безопасных по возможности взрыва рудничного газа и угольной пыли.

3. ВВ, допущенные только для условий, опасных по возможности взрыва газа или пыли (предохранительные ВВ).

Критерием отнесения взрывчатого вещества к той или иной группе служат количество выделяющихся при взрыве ядовитых (вредных) газов и температура продуктов взрыва. Так, тротил из-за большого количества образующихся при его взрыве ядовитых газов может применяться только на открытых работах (строительство и карьерная добыча полезных ископаемых ), тогда как аммиачно-селитренные ВВ допускаются и на открытых, и в подземных работах в условиях, неопасных по газу и пыли. Для подземных же работ, где возможно наличие взрывающихся газо- и пылевоздушных смесей, допускаются только ВВ, имеющие пониженную температуру продуктов взрыва.

Большую часть истории человек использовал для уничтожения себе подобных всевозможные виды холодного оружия, начиная от незамысловатого каменного топора, и заканчивая весьма продвинутыми и сложными в изготовлении металлическими орудиями. Примерно в XI–XII столетии в Европы начали применять пушки, и тем самым человечество познакомилось с важнейшим взрывчатым веществом – черным порохом.

Это был поворотный момент в военной истории, хотя понадобилось еще примерно восемь столетий, чтобы огнестрельное оружие полностью вытеснило с полей сражений остро наточенную сталь. Параллельно прогрессу пушек и мортир развивались взрывчатые вещества — причем не только порох, но и всевозможных составов для снаряжения артиллерийских снарядов или изготовления фугасов. Разработка новых взрывчатых веществ и взрывных устройств активно продолжается и в наши дни.

Сегодня известны десятки взрывчатых веществ. Помимо военных нужд, взрывчатка активно применяется в горном деле, при строительстве дорог и туннелей. Однако прежде чем говорить об основных группах взрывчатых веществ, следует несколько подробнее упомянуть о процессах, происходящих во время взрыва и понять принцип действия взрывчатых веществ (ВВ).

Взрывчатка: что это такое?

Взрывчатые вещества – это большая группа химических соединений или смесей, которые под воздействием внешних факторов способны к быстрой, самоподдерживающейся и неуправляемой реакции с выделением большого количества энергии. Проще говоря, химический взрыв – это процесс преобразования энергии молекулярных связей в тепловую энергию. Обычно его результатом является большое количество раскаленных газов, которые и выполняют механическую работу (дробление, разрушение, перемещение и др.).

Классификация взрывчатых веществ довольно сложна и запутанна. К ВВ относятся вещества, которые распадаются не только в процессе взрыва (детонации), но и медленного или быстрого горения. К последней группе относятся пороха и различные виды пиротехнических смесей.

Вообще, понятия «детонация» и «дефлаграция» (горение) являются ключевыми для понимания процессов химического взрыва.

Детонацией называют стремительное (сверхзвуковое) распространение фронта сжатия с сопутствующей ему экзотермической реакцией во взрывчатом веществе. В этом случае химические превращения идут настолько бурно и выделяется такое количество тепловой энергии и газообразных продуктов, что в веществе образуется ударная волна. Детонация – это процесс максимально быстрого, можно сказать, лавинообразного вовлечения вещества в реакцию химического взрыва.

Дефлаграция, или горение – это тип окислительно-восстановительной химической реакции, во время которой ее фронт перемещается в веществе за счет обычной теплоотдачи. Подобные реакции хорошо всем известны и часто встречаются в повседневной жизни.

Любопытно, что энергия, выделяемая при взрыве, не так уж и велика. Например, при детонации 1 кг тротила ее выделяется в несколько раз меньше, чем при сгорании 1 кг каменного угля. Однако при взрыве это происходит в миллионы раз быстрее, вся энергия выделяется практически мгновенно.

Следует отметить, что скорость распространения детонации – это важнейшая характеристика взрывчатых веществ. Чем она выше, тем более эффективен заряд взрывчатки.

Чтобы запустить процесс химического взрыва необходимо воздействие внешнего фактора, он может быть нескольких видов:

  • механический (накол, удар, трение);
  • химический (реакция какого-либо вещества с зарядом взрывчатки);
  • внешняя детонация (взрыв в непосредственной близости от ВВ);
  • тепловой (пламя, нагревание, искра).

Следует отметить, что разные виды ВВ имеют различную чувствительность к внешним воздействиям.

Некоторые из них (например, черный порох) прекрасно реагируют на тепловое воздействие, но при этом практически не откликается на механическое и химическое. А для подрыва тротила нужно только детонационное воздействие. Гремучая ртуть бурно реагирует на любой внешний раздражитель, а есть некоторые ВВ, которые детонируют вообще безо всякого внешнего воздействия. Практическое использование таких «взрывоопасных» ВВ попросту невозможно.

Основные свойства ВВ

Главными из них являются:

  • температура продуктов взрыва;
  • теплота взрыва;
  • скорость детонации;
  • бризантность;
  • фугасность.

На последних двух пунктах следует остановиться отдельно. Бризантность ВВ – это его способность разрушать прилегающую к нему среду (горную породу, металл, дерево). Данная характеристика во многом зависит от физического состояния, в котором находится взрывчатка (степень измельчения, плотность, однородность). Бризантность напрямую зависит от скорости детонации взрывчатого вещества — чем она выше, тем лучше ВВ может дробить и разрушать окружающие предметы.

Бризантные взрывчатые вещества обычно используют для снаряжения артиллерийских снарядов, авиабомб, мин, торпед, гранат и других боеприпасов. Этот тип ВВ менее чувствителен к внешним факторам, чтобы подорвать такой заряд взрывчатого вещества необходима внешняя детонация. В зависимости от своей разрушительной силы бризантные взрывчатые вещества делятся на:

  • Повышенной мощности: гексоген, тетрил, оксоген;
  • Средней мощности: тротил, мелинит, пластид;
  • Пониженной мощности: ВВ на основе аммиачной селитры.

Чем выше бризантность ВВ, тем лучше оно разрушит корпус бомбы или снаряда, придаст осколкам большую энергию и создаст более мощную ударную волну.

Не менее важным свойством взрывчатых веществ является его фугасность. Это самая общая характеристика любого ВВ, она показывает насколько та или иная взрывчатка обладает разрушающей способностью. Фугасность напрямую зависит от количества газов, которые образовываются при взрыве. Следует отметить, что бризантность и фугасность, как правило, не связаны между собой.

Фугасность и бризантность определяют то, что мы называем мощностью или силой взрыва. Однако для различных целей необходимо подбирать соответствующие виды ВВ. Бризантность очень важна для снарядов, мин и авиабомб, а вот для горных работ больше подойдет взрывчатка со значительным уровнем фугасности. На практике подбор ВВ гораздо более сложен, и чтобы правильно выбрать взрывчатку, следует учитывать все ее характеристики.

Существует общепринятый способ определения мощности различных взрывчатых веществ. Это так называемый тротиловый эквивалент, когда мощность тротила условно принимается за единицу. Используя этот способ можно высчитать, что мощность 125 гр тротила равна 100 гр гексогена и 150 гр аммонита.

Еще одной важной характеристикой взрывчатых веществ является их чувствительность. Она определяется вероятностью взрыва ВВ при воздействии на него того или иного фактора. От этого параметра зависит безопасность производства и хранение взрывчатых веществ.

Чтобы лучше показать, насколько важна эта характеристика взрывчатого вещества, можно сказать, что американцы разработали специальный стандарт (STANAG 4439) для чувствительности взрывчатых веществ. И на это им пришлось пойти не от хорошей жизни, а после череды тяжелейших несчастных случаев: при подрыве на американской базе ВВС «Бьен-Хо» во Вьетнаме погибли 33 человека, вследствие взрывов на авианосце «Форрестол» были повреждены около 80 самолетов, а также после детонации авиаракет на авианосце «Орискани» (1966 год). Так что хороша не просто мощная взрывчатка, а детонирующая именно в нужный момент — и никогда больше.

Все современные ВВ – это либо химические соединения, либо механические смеси. К первой группе относятся гексоген, тротил, нитроглицерин, пикриновая кислота. Химические взрывчатые вещества, как правило, получают нитрованием различных видов углеводородов, что приводит к введению в их молекулы азота и кислорода. Ко второй группе – аммиачно-селитренные ВВ. В состав взрывчатых веществ подобного типа обычно входят вещества, богатые кислородом и углеродом. Для повышения температуры взрыва в смеси часто добавляют порошки металлов: алюминия, бериллия, магния.

Кроме всех вышеперечисленных свойств, любое взрывчатое вещество должно быть химически стойким и пригодным для длительного хранения. В 80-х годах прошлого века китайцы сумели синтезировать мощнейшую взрывчатку – трициклическую мочевину. Ее мощность превосходила тротил в двадцать раз. Проблема была в том, что через несколько дней после изготовления вещество разлагалось и превращалось в слизь, непригодную для дальнейшего использования.

Классификация взрывчатых веществ

По своим взрывчатым свойствам ВВ делятся на:

  1. Инициирующие. Они используются для подрыва (детонации) других взрывчатых веществ. Основными отличиями ВВ этой группы является высокая чувствительность к инициирующим факторам и высокая скорость детонации. К этой группе относятся: гремучая ртуть, диазодинитрофенол, тринитрорезорцинат свинца и другие. Как правило, эти соединения используются в капсюлях-воспламенителях, запальных трубках, капсюлях-детонаторах, пиропатронах, самоликвидаторах;
  2. Бризантные взрывчатые вещества. Этот тип ВВ обладает значительным уровнем бризантности и используется в качестве основного заряда для подавляющего большинства боеприпасов. Эти мощные взрывчатые вещества отличаются по своему химическому составу (N-нитрамины, нитраты, другие нитросоединения). Иногда их используют в виде различных смесей. Бризантные взрывчатые вещества также активно используют в горном деле, при прокладке туннелей, проведении других инженерных работ;
  3. Метательные взрывчатые вещества. Являются источником энергии для метания снарядов, мин, пуль, гранат, а также для движения ракет. К этому классу взрывчатых веществ относятся пороха и различные виды ракетного топлива;
  4. Пиротехнические составы. Используются для снаряжения специальных боеприпасов. При сгорании производят специфический эффект: осветительный, сигнальный, зажигательный.

Взрывчатые вещества разделяют и по их физическому состоянию на:

  1. Жидкие. Например, нитрогликоль, нитроглицерин, этилнитрат. Существуют и разнообразные жидкостные смеси ВВ (панкластит, взрывчатые вещества Шпренгеля);
  2. Газообразные;
  3. Гелеобразные. Если растворить нитроцеллюлозу в нитроглицерине, то получится так называемый гремучий студень. Это крайне нестабильное, но довольно мощное взрывчатое гелеобразное вещество. Его любили использовать российские революционеры-террористы в конце XIX века;
  4. Суспензии. Довольно обширная группа взрывчатых веществ, которые в наши дни применяются для промышленных целей. Существуют различные виды взрывчатых суспензий, в которых ВВ либо окислитель является жидкой средой;
  5. Эмульсионные взрывчатые вещества. Весьма популярный в наши дни вид ВВ. Часто используется в строительных или шахтных работах;
  6. Твердые. Наиболее распространенная группа ВВ. К ней относятся практически все взрывчатые вещества, используемые в военном деле. Могут быть монолитными (тротил), гранулированными или порошкообразными (гексоген);
  7. Пластичные. Эта группа взрывчатых веществ обладает пластичностью. Такая взрывчатка стоит дороже обычной, поэтому ее редко применяют для снаряжения боеприпасов. Типичным представителем этой группы является пластид (или пластит). Его часто используют при проведении диверсий для подрыва конструкций. По своему составу пластид – это смесь гексогена и какого-либо пластификатора;
  8. Эластичные.

Немного истории ВВ

Первым взрывчатым веществом, которое было придумано человечеством, стал черный порох. Считается, что он был изобретен в Китае еще в VII веке нашей эры. Однако надежных подтверждений этому до сих пор так и не обнаружено. Вообще вокруг пороха и первых попыток его применения создано немало мифов и явно фантастических историй.

Существуют древнекитайские тексты, в которых описаны смеси, похожие по составу на черный дымный порох. Их использовали в качестве лекарств, а также для пиротехнических шоу. Кроме того, есть многочисленные источники, утверждающие, что в следующих столетиях китайцы активно использовали порох для производства ракет, мин, гранат и даже огнеметов. Правда, иллюстрации некоторых видов этого древнего огнестрельного оружия заставляют усомниться в возможности его практического применения.

Еще до пороха в Европе стали применять «греческий огонь» - горючее взрывчатое вещество, рецепт которого, к сожалению, не дошел до наших дней. «Греческий огонь» представлял собой легковоспламеняющуюся смесь, которая не только не тушилась водой, но даже становилась в контакте с ней еще более огнеопасной. Этот ВВ был придуман византийцами, они активно использовали «греческий огонь» как на суше, так и в морских баталиях, и хранили его рецептуру в строжайшем секрете. Современные эксперты считают, что в состав этой смеси входили нефть, смола, сера и негашёная известь.

Порох впервые появился в Европе примерно в середине XIII века и до сих пор неизвестно, как именно он попал на континент. Среди европейских изобретателей пороха часто упоминают имена монаха Бертольда Шварца и английского ученого Роджера Бэкона, хотя единого мнения у историков нет. По одной из версий порох, изобретенный в Китае, через Индию и Ближний Восток попал в Европу. Так или иначе, уже в XIII столетии европейцы знали о порохе и даже пытались использовать это кристаллическое взрывчатое вещество для мин и примитивного огнестрельного оружия.

Долгие столетия порох оставался единственным видом ВВ, которое знал и применял человек. Только на рубеже XVIII–XIX веков, благодаря развитию химии и других естественных наук, развитие взрывчатых веществ достигло новых высот.

В конце XVIII века благодаря французским химикам Лавуазье и Бертолле появился так называемые хлоратный порох. В это же время было изобретено «гремучее серебро», а также пикриновая кислота, которая в будущем стала использоваться для снаряжения артиллерийских снарядов.

В 1799 году английским химиком Говардом была найдена «гремучая ртуть», которая до сих пор используется в капсюлях в качестве инициирующего взрывчатого вещества. В начале XIX века был получен пироксилин – взрывчатое вещество, которым можно было не только снаряжать снаряды, но и изготавливать из него бездымный порох.динамит . Это мощное взрывчатое вещество, однако оно отличается повышенной чувствительностью. Во время Первой Мировой войны динамитом пытались снаряжать снаряды, но от этой идеи довольно быстро отказались. Динамит еще долго использовали в горных работах, но в наши дни эта взрывчатка давно не производится.

В 1863 году немецкие ученые открыли тротил, а в 1891 году в Германии началось промышленное производство этого взрывчатого вещества. В 1897 году немецкий химик Ленце синтезировал гексоген – одно из самых мощных и распространенных взрывчатых веществ в наши дни.

Разработка новых взрывчатых веществ и взрывных устройств продолжалась все прошлое столетие, исследования в этом направлении идут и сегодня.

Пентагону новую взрывчатку на основе гидразина, которая якобы была в 20 раз мощнее тротила. Однако был у этого ВВ и один ощутимый минус – абсолютно мерзкий запах заброшенного привокзального туалета. Проверка показала, что по мощности новое вещество превосходит тротил всего лишь в 2-3 раза, и от использования решили отказаться. После этого EXCOA предложила другой способ применения взрывчатого вещества: делать с его помощью окопы.

Вещество тонкой струйкой поливалось на землю, а затем подрывалось. Тем самым в считанные секунды можно было получить окоп полного профиля без лишних усилий. Несколько комплектов взрывчатки отправили во Вьетнам для испытания в боевых условиях. Конец этой истории был забавным: окопы, полученные с помощью взрыва, имели такой отвратительный запах, что солдаты отказывались находиться в них.

В конце 80-х американцы разработали новую взрывчатку – CL-20. По информации некоторых СМИ, ее мощность едва ли не в двадцать раз превышает тротил. Однако из-за своей высокой цены (1300 долларов за 1 кг) широкомасштабное производство нового ВВ так и не было начато.

С тех пор как изобрели порох не прекращается мировая гонка за самую мощную взрывчатку. Актуально это и сегодня, несмотря на появление ядерного оружия.

Гексоген – взрывоопасное лекарство

Еще в 1899 году для лечения воспаления в мочевых путях немецкий химик Ганс Геннинг запатентировал лекарство гексоген – аналог известного уротропина. Но вскоре медики потеряли к нему интерес из-за побочной интоксикации. Только через тридцать лет выяснилось, что гексоген оказался мощнейшим взрывчатым веществом, причем, более разрушительным, чем тротил. Килограммовая взрывчатка гексогена произведет такие же разрушения, как и 1.25 килограмм тротила.

Специалисты-пиротехники в основном характеризуют взрывчатые вещества фугасностью и бризантностью. В первом случае говорят об объеме газа, выделенного при взрыве. Мол, чем он больше, тем мощнее фугасность. Бризантность, в свою очередь, зависит уже от скорости образования газов и показывает, как взрывчатка может дробить окружающие материалы.

10 грамм гексогена при взрыве выделяют 480 кубических сантиметров газа, тогда как тротил – 285 кубических сантиметров. Иными словами, гексаген в 1.7 мощнее тротила по фугасности и динамичнее в 1,26 раза по бризантности.

Однако в СМИ чаще всего использует некий усредненный показатель. Например, атомный заряд «Малыш», сброшенный 6 августа 1945 года на японский город Хиросима, оценивают в 13-18 килотонн в тротиловом эквиваленте. Между тем это характеризует не мощность взрыва, а говорит о том, сколько необходимо тротила, чтобы выделилось столько же тепла, как и при указанной ядерной бомбардировке.

Октоген — полмиллиарда долларов на воздух

В 1942 году американский химик Бахманн, проводя опыты с гексогеном, случайно обнаружил новое вещество октоген, причем в виде примеси. Свою находку он предложил военным, однако те отказались. Между тем, через несколько лет, после того, как удалось стабилизировать свойства этого химического соединения, в Пентагоне всё же заинтересовались октогеном. Правда, в чистом виде в военных целях он широко не применялся, чаще всего в литьевой смеси с тротилом. Эта взрывчатка получила название «октолом». Она оказалась на 15% мощнее гексогена. Что касается её эффективности, то считается, что один килограмм октогена произведет столько же разрушений, что и четыре килограмма тротила.

Впрочем, в те годы производство октогена было в 10 раз дороже изготовления гексогена, что сдерживало его выпуск в Советском Союзе. Наши генералы подсчитали, что лучше произвести шесть снарядов с гексогеном, чем один – с октолом. Именно поэтому так дорого обошелся американцам взрыв склада боеприпасов во вьетнамском Куи-Нгоне в апреле 1969 года. Тогда официальный представитель Пентагона заявил, что из-за диверсии партизан ущерб составил 123 миллиона долларов, или примерно 0.5 млрд. долларов в нынешних ценах.

В 80-х годах прошлого века после того, как советские химики, в том числе и Е.Ю. Орлова, разработали эффективную и недорогую технологию синтеза октогена, в больших объемах он стал выпускаться и у нас.

Астролит – хорош, но дурно пахнет

В начале 60-х прошлого века американская компания EXCOA презентовала новое взрывчатое вещество на основе гидразина, заявив, что оно в 20 раз мощнее тротила. Прибывших на испытания генералов Пентагона сбил с ног жуткий запах заброшенного общественного туалета. Впрочем, они были готовы его потерпеть. Однако ряд тестов с авиабомбами, заправленными астролитом А 1-5 показал, что взрывчатка оказалось лишь в два раза мощнее тротила.

После того, как чиновники Пентагона забраковали эту бомбу, инженеры из EXCOA предложили новую версию этого взрывчатого вещества уже под маркой «АСТРА-ПАК», причем для рытья окопов методом направленного взрыва. На рекламном ролике солдат тонкой струйкой поливал землю, а затем из укрытия детонировал жидкость. И окоп в человеческий рост – был готов. По своей инициативе компания EXCOA выпустила 1000 комплектов такой взрывчатки и отправила на вьетнамский фронт.

В реальности всё закончилось грустно и анекдотично. Полученные окопы источали такой отвратительный запах, что американские солдаты стремились их покинуть любой ценой, невзирая на приказы и опасность для жизни. Те же, кто оставался, теряли сознание. Неиспользованные комплекты военнослужащие за свой счет отправили назад – в офис фирмы EXCOA.

Взрывчатка, которая убивает своих

Наряду гексогеном и октогеном, классикой взрывчатых веществ считают трудно произносимый тетранитропентаэритрит, который чаще называют тэном. Однако из-за высокой чувствительности он так и не получил широкого применения. Дело в том, что для военных целей важна не столько взрывчатка, которая разрушительнее других, сколько – та, которая при этом не взрывается от любого прикосновения, то есть с низкой чувствительностью.

Особенно придирчиво к этому вопросы относятся американцы. Именно они разработали натовский стандарт STANAG 4439 для чувствительности взрывчатки, которая может использоваться в военных целях. Правда, это произошло уже после череды тяжелейших инцидентов, в числе которых: взрыв склада на американской базе ВВС «Бьен-Хо» во Вьетнаме, стоивший жизни 33 техникам; катастрофа на борту авианосца «Форрестол», в результате которой было повреждено 60 самолетов; детонация в хранилище авиационных ракет на борту авианосца «Орискани» (1966 года) тоже с многочисленными жертвами.

Китайский разрушитель

В 80 годах прошлого века было синтезировано вещество трициклическая мочевина. Считается, что первыми, кто получил эту взрывчатку, были китайцы. Тесты показали огромную разрушительную силу «мочевины» — один её килограмм заменял двадцать два килограмма тротила.

Эксперты соглашаются с такими выводами, поскольку «китайский разрушитель» имеет самую большую плотность из всех известных взрывчатых веществ, и при этом обладает максимальным кислородным коэффициентом. То есть, во время взрыва стопроцентно сжигается весь материал. Кстати, у тротила он равен 0.74.

В реальности трициклическая мочевина не годится для военных действий, прежде всего, из-за плохой гидролитической стойкости. Уже на следующий день при стандартном хранении она превращается в слизь. Впрочем, китайцам удалось получить другую «мочевину» — динитромочевину, которая хоть и хуже по фугасности, чем «разрушитель», но тоже относится к одному из самых мощных взрывчатых веществ. Сегодня ее выпускают американцы на своих трех пилотных установках.

Мечта пироманов – CL-20

Взрывчатка CL-20 на сегодня позиционируется, как одна из самых мощных. В частности, СМИ, в том числе и российские, утверждают, что один кг CL-20 вызывают разрушения, на которые требуется 20кг тротила.

Интересно, что деньги на разработку СL-20 Пентагон выделил лишь после того, как в американской прессе появилось сообщение, что такую взрывчатку уже сделали в СССР. В частности один из докладов на эту тему назывался так: «Возможно, это вещество разработано русскими в институте Зелинского».

В реальности в качестве перспективного взрывчатого вещества американцы рассматривали другую взрывчатку, впервые полученную в СССР, а именно диаминоазоксифуразан. Наряду с высокой мощностью, значительно превосходящей октоген, оно обладает низкой чувствительностью. Единственное, что сдерживает его широкое применение – отсутствие промышленных технологий.

Взрывоопасные вещества стали давно частью жизни человека. О том, какими они бывают, где применяются и каковы правила их хранения, расскажет эта статья.

Немного истории

Человек испокон веков пытался создать вещества, которые при определенном воздействии извне вызвали взрыв. Естественно, делалось это далеко не в мирных целях. И одним из первых широко известных взрывчатых субстанций стал легендарный греческий огонь, рецепт которого до сих пор точно неизвестен. Затем последовало создание пороха в Китае приблизительно в VII веке, который как раз, наоборот, сначала использовали в развлекательных целях в пиротехнике, а лишь потом приспособили для военных нужд.

На несколько столетий утвердилось мнение, что порох является единственным известным человеку взрывчатым веществом. Только в конце XVIII века был открыт фульминат серебра, который небезызвестен под необычным названием "гремучее серебро". Ну а после этого открытия появились пикриновая кислота, "гремучая ртуть", пироксилин, нитроглицерин, тротил, гексоген и так далее.

Понятие и классификация

Выражаясь простым языком, взрывоопасные вещества - это специальные вещества или их смеси, которые при определенных условиях могут взорваться. Этими условиями могут выступать повышение температуры или давления, толчок, удар, звуки конкретных частот, а также интенсивное освещение или даже легкое прикосновение.

Например, одним из самых известных и распространенных взрывоопасных веществ считается ацетилен. Это бесцветный газ, который к тому же не имеет запаха в чистом виде и легче воздуха. Применяющемуся на производстве ацетилену свойственен резкий запах, который ему придают примеси. Широкое распространение он приобрел в газовой сварке и резке металлов. Ацетилен может взорваться при температуре 500 градусов Цельсия или при длительном соприкосновении с медью, а также серебром при ударе.

На данный момент известно очень много взрывоопасных веществ. Классифицируются они по многим критериям: состав, физическое состояние, взрывчатые свойства, направления применения, степень опасности.

По направлению применения взрывчатые вещества могут быть:

  • промышленными (используются во многих отраслях: от горного дела до обработки материалов);
  • опытно-экспериментальными;
  • военными;
  • специального предназначения;
  • антисоциального применения (зачастую сюда относятся кустарно изготовленные смеси и вещества, которые используются в террористических и хулиганских целях).

Степень опасности

Также в качестве примера можно рассмотреть взрывоопасные вещества по степени их опасности. На первом месте находятся газы на основе углеводорода. Данные вещества склонны к произвольной детонации. К ним относятся хлор, аммиак, фреоны и так далее. Согласно статистике, почти треть происшествий, в которых основными действующими лицами выступают взрывоопасные вещества, связаны с газами на основе углеводорода.

Дальше следует водород, который в определенных условиях (например, соединение с воздухом в соотношении 2:5) приобретает наибольшую взрывоопасность. Ну и замыкают эту тройку лидеров по степени опасности пары жидкостей, которые склонны к воспламенению. Прежде всего, это пары мазута, дизельного топлива и бензина.


Взрывчатые вещества в военном деле

Взрывчатые вещества находят применение в военном деле повсеместно. Взрыв бывает двух типов: горение и детонация. Из-за того, что порох горит, при его взрыве в замкнутом пространстве происходит не разрушение гильзы, а образование газов и вылет пули или снаряда из ствола. Тротил, гексоген или аммонал как раз детонируют и создают взрывную волну, давление резко возрастает. Но для того, чтобы произошел процесс детонации, необходимо воздействие со стороны, которое может быть:

  • механическим (удар или трение);
  • тепловым (пламя);
  • химическим (реакция взрывчатого вещества с ещё каким-либо веществом);
  • детонационным (происходит взрыв одного взрывчатого вещества рядом с другим).

Исходя из последнего пункта, становится ясно, что можно выделить два больших класса взрывчатых веществ: композитные и индивидуальные. Первые в основном состоят из двух или более веществ, которые не связаны между собой химически. Бывает, что по отдельности такие компоненты не способны к детонации и могут проявить подобное свойство только при контакте друг с другом.

Также помимо главных компонентов в составе композитного взрывчатого вещества могут находиться различные примеси. Назначение их также является весьма широким: регулирование чувствительности или фугасности, ослабление взрывных характеристик или их усиление. Так как в последнее время мировой терроризм все больше и больше распространяется с помощью примесей, стало возможным обнаружить, где было изготовлено взрывчатое вещество, и найти его с помощью служебных собак.

С индивидуальными все понятно: иногда для положительного теплового выхода им не требуется даже кислород.

Бризантность и фугасность

Обычно для того, чтобы понять мощность и силу взрывчатого вещества, необходимо иметь представление о таких характеристиках, как бризантность и фугасность. Первая означает способность разрушать окружающие предметы. Чем выше будет бризантность (которая, кстати, измеряется в миллиметрах), тем лучше вещество подойдет в качестве начинки для авиабомбы или снаряда. Взрывчатые вещества с высокой бризантностью будут создавать сильную ударную волну и придавать разлетающимся осколкам большую скорость.

Фугасность же обозначает способность выбросить окружающие материалы. Она измеряется в кубических сантиметрах. Взрывчатыми веществами с высокой фугасностью зачастую пользуются при работе с грунтом.

Техника безопасности при работе с взрывоопасными веществами

Список травм, которые может получить человек из-за несчастных случаев, связанных со взрывчатыми веществами, весьма и весьма обширен: термические и химические ожоги, контузия, нервный шок от удара, ранения от осколков стеклянной или металлической посуды, в которой находились взрывоопасные вещества, повреждения барабанной перепонки. Поэтому техника безопасности при работе со взрывоопасными веществами имеет свои особенности. Например, при работе с ними необходимо иметь предохранительный экран из толстого органического стекла или другого прочного материала. Также тот, кто непосредственно работает со взрывоопасными веществами, должен быть облачен в защитную маску или даже шлем, перчатки и передник из прочного материала.

Хранение взрывоопасных веществ также имеет свои особенности. Например, их незаконное хранение имеет последствия в виде ответственности, согласно Уголовному Кодексу РФ. Необходимо предотвращать загрязнение пылью хранящихся взрывоопасных веществ. Емкости с ними должны быть плотно закрыты, чтобы пары не попали в окружающую среду. Примером могут выступать токсичные взрывоопасные вещества, пары которых могут вызвать как головную боль и головокружение, так и паралич. Горючие взрывоопасные вещества хранят в изолированных складах, которые имеют несгораемые стены. Места, где находятся взрывоопасные химические вещества, должны быть оснащены противопожарным оборудованием.

Эпилог

Итак, взрывчатые вещества могут быть как верным помощником человеку, так и врагом при неправильном обращении и хранении. Поэтому необходимо максимально точно следовать правилам техники безопасности, а также не пытаться изображать из себя юного пиротехника и мастерить какие-либо кустарные взрывоопасные вещества.

С тех пор как изобрели порох не прекращается мировая гонка за самую мощную взрывчатку. Актуально это и сегодня, несмотря на появление ядерного оружия.

1 Гексоген - взрывоопасное лекарство

Еще в 1899 году для лечения воспаления в мочевых путях немецкий химик Ганс Геннинг запатентовал лекарство гексоген - аналог известного уротропина. Но вскоре медики потеряли к нему интерес из-за побочной интоксикации. Только через тридцать лет выяснилось, что гексоген оказался мощнейшим взрывчатым веществом, причем, более разрушительным, чем тротил. Килограммовая взрывчатка гексогена произведет такие же разрушения, как и 1.25 килограмм тротила.

Специалисты-пиротехники в основном характеризуют взрывчатые вещества фугасностью и бризантностью. В первом случае говорят об объеме газа, выделенного при взрыве. Мол, чем он больше, тем мощнее фугасность. Бризантность, в свою очередь, зависит уже от скорости образования газов и показывает, как взрывчатка может дробить окружающие материалы.

10 грамм гексогена при взрыве выделяют 480 кубических сантиметров газа, тогда как тротил - 285 кубических сантиметров. Иными словами, гексоген в 1.7 мощнее тротила по фугасности и динамичнее в 1,26 раза по бризантности.

Однако в СМИ чаще всего использует некий усредненный показатель. Например, атомный заряд «Малыш», сброшенный 6 августа 1945 года на японский город Хиросима, оценивают в 13-18 килотонн в тротиловом эквиваленте. Между тем это характеризует не мощность взрыва, а говорит о том, сколько необходимо тротила, чтобы выделилось столько же тепла, как и при указанной ядерной бомбардировке.

В 1942 году американский химик Бахманн, проводя опыты с гексогеном, случайно обнаружил новое вещество октоген, причем в виде примеси. Свою находку он предложил военным, однако те отказались. Между тем, через несколько лет, после того, как удалось стабилизировать свойства этого химического соединения, в Пентагоне всё же заинтересовались октогеном. Правда, в чистом виде в военных целях он широко не применялся, чаще всего в литьевой смеси с тротилом. Эта взрывчатка получила название «октолом». Она оказалась на 15% мощнее гексогена. Что касается её эффективности, то считается, что один килограмм октогена произведет столько же разрушений, что и четыре килограмма тротила.

Впрочем, в те годы производство октогена было в 10 раз дороже изготовления гексогена, что сдерживало его выпуск в Советском Союзе. Наши генералы подсчитали, что лучше произвести шесть снарядов с гексогеном, чем один - с октолом. Именно поэтому так дорого обошелся американцам взрыв склада боеприпасов во вьетнамском Куи-Нгоне в апреле 1969 года. Тогда официальный представитель Пентагона заявил, что из-за диверсии партизан ущерб составил 123 миллиона долларов, или примерно 0.5 млрд. долларов в нынешних ценах.

В 80-х годах прошлого века после того, как советские химики, в том числе и Е.Ю. Орлова, разработали эффективную и недорогую технологию синтеза октогена, в больших объемах он стал выпускаться и у нас.

3 Астролит - хорош, но дурно пахнет

В начале 60-х прошлого века американская компания EXCOA презентовала новое взрывчатое вещество на основе гидразина, заявив, что оно в 20 раз мощнее тротила. Прибывших на испытания генералов Пентагона сбил с ног жуткий запах заброшенного общественного туалета. Впрочем, они были готовы его потерпеть. Однако ряд тестов с авиабомбами, заправленными астролитом А 1-5 показал, что взрывчатка оказалось лишь в два раза мощнее тротила.

После того, как чиновники Пентагона забраковали эту бомбу, инженеры из EXCOA предложили новую версию этого взрывчатого вещества уже под маркой «АСТРА-ПАК», причем для рытья окопов методом направленного взрыва. На рекламном ролике солдат тонкой струйкой поливал землю, а затем из укрытия детонировал жидкость. И окоп в человеческий рост - был готов. По своей инициативе компания EXCOA выпустила 1000 комплектов такой взрывчатки и отправила на вьетнамский фронт.

В реальности всё закончилось грустно и анекдотично. Полученные окопы источали такой отвратительный запах, что американские солдаты стремились их покинуть любой ценой, невзирая на приказы и опасность для жизни. Те же, кто оставался, теряли сознание. Неиспользованные комплекты военнослужащие за свой счет отправили назад - в офис фирмы EXCOA.

4 Взрывчатка, которая убивает своих

Наряду гексогеном и октогеном, классикой взрывчатых веществ считают трудно произносимый тетранитропентаэритрит, который чаще называют тэном. Однако из-за высокой чувствительности он так и не получил широкого применения. Дело в том, что для военных целей важна не столько взрывчатка, которая разрушительнее других, сколько - та, которая при этом не взрывается от любого прикосновения, то есть с низкой чувствительностью.

Особенно придирчиво к этому вопросы относятся американцы. Именно они разработали натовский стандарт STANAG 4439 для чувствительности взрывчатки, которая может использоваться в военных целях. Правда, это произошло уже после череды тяжелейших инцидентов, в числе которых: взрыв склада на американской базе ВВС «Бьен-Хо» во Вьетнаме, стоивший жизни 33 техникам; катастрофа на борту авианосца «Форрестол», в результате которой было повреждено 60 самолетов; детонация в хранилище авиационных ракет на борту авианосца «Орискани» (1966 года) тоже с многочисленными жертвами.

5 Китайский разрушитель

В 80 годах прошлого века было синтезировано вещество трициклическая мочевина. Считается, что первыми, кто получил эту взрывчатку, были китайцы. Тесты показали огромную разрушительную силу «мочевины» - один её килограмм заменял двадцать два килограмма тротила.

Эксперты соглашаются с такими выводами, поскольку «китайский разрушитель» имеет самую большую плотность из всех известных взрывчатых веществ, и при этом обладает максимальным кислородным коэффициентом. То есть, во время взрыва стопроцентно сжигается весь материал. Кстати, у тротила он равен 0.74.

В реальности трициклическая мочевина не годится для военных действий, прежде всего, из-за плохой гидролитической стойкости. Уже на следующий день при стандартном хранении она превращается в слизь. Впрочем, китайцам удалось получить другую «мочевину» - динитромочевину, которая хоть и хуже по фугасности, чем «разрушитель», но тоже относится к одному из самых мощных взрывчатых веществ. Сегодня ее выпускают американцы на своих трех пилотных установках.

6 Мечта пироманов - CL-20

Взрывчатка CL-20 на сегодня позиционируется, как одна из самых мощных. В частности, СМИ, в том числе и российские, утверждают, что один кг CL-20 вызывают разрушения, на которые требуется 20кг тротила.

Интересно, что деньги на разработку СL-20 Пентагон выделил лишь после того, как в американской прессе появилось сообщение, что такую взрывчатку уже сделали в СССР. В частности один из докладов на эту тему назывался так: «Возможно, это вещество разработано русскими в институте Зелинского».

В реальности в качестве перспективного взрывчатого вещества американцы рассматривали другую взрывчатку, впервые полученную в СССР, а именно диаминоазоксифуразан. Наряду с высокой мощностью, значительно превосходящей октоген, оно обладает низкой чувствительностью. Единственное, что сдерживает его широкое применение - отсутствие промышленных технологий.