Изменение количества движения механической системы. Момент количества движения материальной точки относительно центра и оси Теорема об изменении количества движения материальной системы

Аналогично тому, как для одной материальной точки, выведем теорему об изменении количества движения для системы в различных формах.

Преобразуем уравнение (теорема о движении цента масс механической системы)

следующим образом:

;

Полученное уравнение выражает теорему об изменении количества движения механической системы в дифференциальной форме: производная от количества движения механической системы по времени равна главному вектору внешних сил, действующих на систему .

В проекциях на декартовы оси координат:

; ; .

Беря интегралы от обеих частей последних уравнений по времени, получим теорему об изменении количества движения механической системы в интегральной форме: изменение количества движения механической системы равно импульсу главного вектора внешних сил, действующих на систему .

.

Или в проекциях на декартовы оси координат:

; ; .

Следствия из теоремы (законы сохранения количества движения)

Закон сохранения количества движения получаются как частные случаи теоремы об изменении количества движения для системы в зависимости от особенностей системы внешних сил. Внутренние силы могут быть любыми, так как они не влияют на изменения количества движения.

Возможны два случая:

1. Если векторная сумма всех внешних сил, приложенных к системе, равна нулю , то количество движения системы постоянно по величине и направлению

2. Если равна нулю проекция главного вектора внешних сил на какую либо координатную ось и/или и/или , то проекция количества движения на эти же оси является величиной постоянной, т.е. и/или и/или соответственно.

Аналогичные записи можно сделать и для материальной точки и для материальной точки.

Условие задачи . Из орудия, масса которого М , вылетает в горизонтальном направлении снаряд массы m со скоростью v . Найти скорость V орудия после выстрела.

Решение . Все внешние силы, действующие на механическую систему орудие-снаряд, вертикальны. Значит, на основании следствия из теоремы об изменении количества движения системы, имеем: .

Количество движения механической системы до выстрела:

Количество движения механической системы после выстрела:

.

Приравнивая правые части выражений, получим, что

.

Знак «-» в полученной формуле указывает на то, что после выстрела орудие откатится в направлении, противоположном оси Ox .

ПРИМЕР 2. Струя жидкости плотностью вытекает со скоростью V из трубы с площадью поперечного сечения F и ударяется под углом о вертикальную стенку. Определить давление жидкости на стену.

РЕШЕНИЕ. Применим теорему об изменении количества движения в интегральной форме к объему жидкости массой m ударяющемуся о стену за некоторый промежуток времени t .

УРАВНЕНИЕ МЕЩЕРСКОГО

(основное уравнение динамики тела переменной массы)

В современной технике возникают случаи, когда масса точки и системы не остается постоянной в процессе движения, а изменяется. Так, например, при полете космических ракет, вследствие выбрасывания продуктов сгорания и отдельных ненужных частей ракет, изменение массы достигает 90-95% общей начальной величины. Но не только космическая техника может быть примером динамики движения переменной массы. В текстильной промышленности происходит значительное изменения массы различных веретен, шпуль, рулонов при современных скоростях работы станков и машин.

Рассмотрим главные особенности, связанные с изменением массы, на примере поступательного движения тела переменной массы. К телу переменной массы нельзя непосредственно применить основной закон динамики. Поэтому получим дифференциальные уравнения движения точки переменной массы, применяя теорему об изменении количества движения системы.

Пусть точка массой m+dm движется со скоростью . Затем происходит отрыв от точки некоторой частицы массой dm движущейся со скоростью .

Количество движения тела до отрыва частицы:

Количество движения системы, состоящей из тела и оторвавшейся частицы, после ее отрыва:

Тогда изменение количества движения:

Исходя из теоремы об изменении количества движения системы:

Обозначим величину - относительная скорость частицы:

Обозначим

Величину R называют реактивной силой. Реактивная сила является тягой двигателя, обусловленная выбросом газа из сопла.

Окончательно получим

-

Данная формула выражает основное уравнение динамики тела переменной массы (формула Мещерского). Из последней формулы следует, что дифференциальные уравнения движения точки переменной массы имеют такой же вид, как и для точки постоянной массы, кроме приложенных к точке дополнительно реактивной силы, обусловленной изменением массы.

Основное уравнение динамики тела переменной массы свидетельствует о том, что ускорение этого тела формируется не только за счет внешних сил, но и за счет реактивной силы.

Реактивная сила – это сила, родственная той, которую ощущает стреляющий человек - при стрельбе из пистолета она ощущается кистью руки; при стрельбе из винтовки воспринимается плечом.

Первая формула Циолковского (для одноступенчатой ракеты)

Пусть точка переменной массы или ракета движется прямолинейно под действием только одной реактивной силы. Так как для многих современных реактивных двигателей , где - максимально допускаемая конструкцией двигателя реактивная сила (тяга двигателя); - сила тяжести, действующая на двигатель, находящийся на земной поверхности. Т.е. изложенное позволяет составляющей в уравнении Мещерского пренебречь и к дальнейшему анализу принять это уравнение в форме: ,

Обозначим:

Запас топлива (при жидкостных реактивных двигателях - сухая масса ракеты (остающаяся её масса после выгорания всего топлива);

Масса отделившихся от ракеты частиц; рассматривается как переменная величина, изменяющаяся от до .

Запишем уравнение прямолинейного движения точки переменной массы в следующем виде вид

.

Так как формула для определения переменной массы ракеты

Следовательно, уравнения движения точки Беря интегралы от обеих частей получим

где - характеристическая скорость – это скорость, которую приобретает ракета под действием тяги после извержения из ракеты всех частиц (при жидкостных реактивных двигателях – после выгорания всего топлива).

Вынесенная за знак интеграла (что можно делать на основании известной из высшей математики теоремы о среднем) - это средняя скорость извергаемых из ракеты частиц.

Просмотр: эта статья прочитана 23264 раз

Pdf Выберите язык... Русский Украинский Английский

Краткий обзор

Полностью материал скачивается выше, предварительно выбрав язык


Механической системой материальных точек или тел называется такая их совокупность, в которой положение и движение каждой точки (или тела) зависит от положения и движения остальных.
Материальное тело рассматривается, как система материальных точек (частиц), которые образуют это тело.
Внешними силами называют такие силы, которые действуют на точки или тела механической системы со стороны точек или тел, которые не принадлежат данной системе.
Внутренними силами , называют такие силы, которые действуют на точки или тела механической системы со стороны точек или тел той же системы, т.е. с которыми точки или тела данной системы взаимодействуют между собой.
Внешние и внутренние силы системы, в свою очередь могут быть активными и реактивными
Масса системы равняется алгебраической сумме масс всех точек или тел системыВ однородном поле тяжести, для которого, вес любой частицы тела пропорционален ее массе. Поэтому распределение масс в теле можно определить по положению его центра тяжести - геометрической точки С , координаты которой называют центром масс или центром инерции механической системы
Теорема о движении центра масс механической системы : центр масс механической системы движется как материальная точка, масса которой равняется массе системы, и к которой приложены все внешние силы, действующие на систему
Выводы:

  1. Механическую систему или твердое тело можно рассматривать как материальную точку в зависимости от характера ее движения, а не от ее размеров.
  2. Внутренние силы не учитываются теоремой о движении центра масс.
  3. Теорема о движении центра масс не характеризует вращательное движение механической системы, а только поступательное

Закон о сохранении движения центра масс системы:
1. Если сумма внешних сил (главный вектор) постоянно равен нулю, то центр масс механической системы находится в покое или движется равномерно и прямолинейно.
2. Если сумма проекций всех внешних сил на какую-нибудь ось равняется нулю, то проекция скорости центра масс системы на эту же ось величина постоянная.

Теорема об изменении количества движения.

Количество движения материальной точк и - векторная величина, которая равняется произведению массы точки на вектор ее скорости.
Единицей измерения количества движения есть (кг м/с).
Количество движения механической системы - векторная величина, равняющаяся геометрической сумме (главному вектору) количества движения всех точек системы.или количество движения системы равняется произведению массы всей системы на скорость ее центра масс
Когда тело (или система) движется так, что ее центр масс неподвижен, то количество движения тела равняется нулю (пример, вращение тела вокруг неподвижной оси, которая проходит через центр масс тела).
Если движение тела сложное, то не будет характеризовать вращательную часть движения при вращении вокруг центра масс. Т.е., количество движения характеризует только поступательное движение системы (вместе с центром масс).
Импульс силы характеризует действие силы за некоторый промежуток времени.
Импульс силы за конечный промежуток времени определяется как интегральная сумма соответствующих элементарных импульсов
Теорема об изменении количества движения материальной точки :
(в дифференциальной форме): Производная за временем от количества движения материальной точки равняется геометрической сумме действующих на точки сил
(в интегральной форме): Изменение количества движения за некоторый промежуток времени равняется геометрической сумме импульсов сил, приложенных к точке за тот же промежуток времени.

Теорема об изменении количества движения механической системы
(в дифференциальной форме): Производная по времени от количества движения системы равняется геометрической сумме всех действующих на систему внешних сил.
(в интегральной форме): Изменение количества движения системы за некоторый промежуток времени равняется геометрической сумме импульсов, действующих на систему внешних сил, за тот же промежуток времени.
Теорема позволяет исключить из рассмотрения заведомо неизвестные внутренние силы.
Теорема об изменении количества движения механической системы и теорема о движении центра масс являются двумя разными формами одной теоремы.
Закон сохранения количества движения системы.

  1. Если сумма всех внешних сил, действующих на систему, равняется нулю, то вектор количества движения системы будет постоянным по направлению и по модулю.
  2. Если сумма проекций всех действующих внешних сил на любую произвольную ось равняется нулю, то проекция количества движения на эту ось является величиной постоянной.

Законы сохранения свидетельствуют, что внутренние силы не могут изменить суммарное количество движения системы.

  1. Классификация сил, действующих на механическую систему
  2. Свойства внутренних сил
  3. Масса системы. Центр масс
  4. Дифференциальные уравнения движения механической системы
  5. Теорема о движении центра масс механической системы
  6. Закон о сохранении движения центра масс системы
  7. Теорема об изменении количества движения
  8. Закон сохранения количества движения системы

Язык: русский, украинский

Размер: 248К

Пример расчета прямозубой цилиндрической передачи
Пример расчета прямозубой цилиндрической передачи. Выполнен выбор материала, расчет допускаемых напряжений, расчет на контактную и изгибную прочность.


Пример решения задачи на изгиб балки
В примере построены эпюры поперечных сил и изгибающих моментов, найдено опасное сечение и подобран двутавр. В задаче проанализировано построение эпюр с помощью дифференциальных зависимостей, провелен сравнительный анализ различных поперечных сечений балки.


Пример решения задачи на кручение вала
Задача состоит в проверке прочности стального вала при заданном диаметре, материале и допускаемых напряжениях. В ходе решения строятся эпюры крутящих моментов, касательных напряжений и углов закручивания. Собственный вес вала не учитывается


Пример решения задачи на растяжение-сжатие стержня
Задача состоит в проверке прочности стального стержня при заданных допускаемых напряжениях. В ходе решения строятся эпюры продольных сил, нормальных напряжений и перемещений. Собственный вес стержня не учитывается


Применение теоремы о сохранении кинетической энергии
Пример решения задачи на применение теоремы о сохранение кинетической энергии механической системы



Определение скорости и ускорения точки по заданным уравнениям движения
Пример решение задачи на определение скорости и ускорения точки по заданным уравнениям движения


Определение скоростей и ускорений точек твердого тела при плоскопараллельном движении
Пример решения задачи на определение скоростей и ускорений точек твердого тела при плоскопараллельном движении

  • 4. Дифференциальные уравнения относительного движения материальной точки. Переносная и кориолисова сила инерции.
  • 5. Принцип относительности
  • 6. Свободные колебания материальной точки без учета сопротивления
  • 7. Затухающие колебания материальной точки.
  • 8. Вынужденные колебания
  • 9.Момент инерции тела относительно оси.Радиус инерции тела.
  • 11(12).Моменты инерции простых тел относительно главных центральных осей:однородного тонкого стержня,сплошного круглого цилиндра.
  • 12.Диф.Уравнения движения механической системы.
  • 13.Теорема о движении центра масс механической системы.
  • 14. Количество движения материальной точки и механической системы.
  • 15. Элементарный импульс силы и импульс силы за конечный промежуток времени.
  • 16. Теоремы об изменении количества движения материальной точки в дифференциальной и в конечной формах.
  • 17. Теорема об изменении количества движения механической системы. Закон сохранения количества движения.
  • 18. Момент количества движения материальной точки относительно центра и относительно оси.
  • 19. Кинетический момент механической системы относительно центра и относительно оси. Кинетический момент твердого тела относительно оси вращения.
  • 21(22) Диференциальные Уравнения движения твердого тела(поступательного, вращательного и плоскопараллельного движения твердого тела).
  • 33. Физический и математический маятники. Период колебаний. Определение осевых моментов инерции тел.
  • 37. Определение главного вектора и главного момента сил инерции механической системы.
  • 33(36). Главный вектор сил инерции поступательно движущегося тела.
  • 38). Главный вектор и главный момент сил инерции вращающегося тела в двух случаях: ось вращения проходит через центр масс тела и не проходит.
  • 45.Обобщеные силы их вычисление,размерности обобщеных сил
  • 46. Обобщеные силы имеющие потенциал.
  • 47.Условия равновесия системы в обобщеных координатах
  • 39.(49) Уравнение Лагранжа второго рода в случае потенциальных сил. Функция Лагранжа (кинетический потенциал).
  • 40.Явление удара.Ударная сила и ударный импульс.Действие ударной силы на материальную точку.
  • 41.Теорема об изменении кол-ва движения мех.Сис. При ударе.
  • 42.Прямой центральный удар тела о неподвижную поверхность;упругий и неупругий удары.Коэфицент
  • 14. Количество движения материальной точки и механической системы.

    Кол-вом дв-ия мат/точки наз-ся векторная величина , равная произведению массы на ее скорость (направлен как и ск-ть по касательной).

    Кол-вом дв-ия с-мы будем наз-ть векторную величину , равную геометрической сумме (главному вектору) кол-в дв-ия всех точек с-мы:

    Кол-во дв-ия с-мы равно произведению массы всей с-мы на скорость ее центра масс:

    15. Элементарный импульс силы и импульс силы за конечный промежуток времени.

    Элем-ым имп-ом силы наз-ся векторная величина , равная произведению силына элем-ный промежуток времениdt: (направлен вдоль линии действия силы)

    Импульс силы за некоторый промежуток времени t 1 равен определенному интегралу от элем-ого импульса, взятому в пределах от 0

    16. Теоремы об изменении количества движения материальной точки в дифференциальной и в конечной формах.

    Т-ма об изм-ии кол-ва дв-ия мат/точки в дифф/форме: производная по времени от кол-ва дв-ия точки равна сумме действующих на точку сил:

    При t=0 ск-ть , приt 1 ск-ть

    Т-ма об изм-ии кол-ва дв-ия мат/точки (в кон/виде): изм-ие кол-ва

    дв-ия точки за некоторый промежуток времени равно сумме импульсов всех действующих на точку сил за тот же промежуток времени.

    17. Теорема об изменении количества движения механической системы. Закон сохранения количества движения.

    Т-ма об изм-ии кол-ва дв-ия с-мы в дифф/форме: производная по времени от кол-ва дв-ия с-мы равна геом-ой сумме всех действующих на

    с-му внешних сил. На

    При t=0 кол-во дв-ия , приt 1 кол/дв :

    Т-ма об изм-ии кол-ва дв-ия с-мы в интегр-ой форме: изменение кол/дв с-мы за некоторый промежуток времени равно сумме импульсов, действующих на с-му внешних сил за тот же промежуток времени.

    З-он сох-ия кол-ва дв-ия:

    1) Пусть , тогда=const. Если сумма внешних сил, действующих на с-му, равна 0, то вектор кол/движ с-мы будет постоянен по модулю и направлению.

    2) Пусть , тогда=const. Если сумма проекций всех действующих внешних сил на какую-нибудь ось равна 0, то проекция кол/движ с-мы на эту ось есть величина постоянная.

    18. Момент количества движения материальной точки относительно центра и относительно оси.

    Момент кол/дв точки отн-но некоторого центра О наз-ся векторная величина , определяемая равенством(направлен перпен-но

    плос-ти, проходящей через и центр О)

    Момент кол/дв точки относ-но оси Oz, проходящий через центр О :

    19. Кинетический момент механической системы относительно центра и относительно оси. Кинетический момент твердого тела относительно оси вращения.

    Главным моментом кол-ств дв-ия (или кин-им моментом) с-мы отн-но данного центра О наз-ся величина , равная геом-ой сумме моментов кол-ств дв-ия всех точек с-мы отн-но этого центра:

    Проекция на оси :

    У любой точки тела, отстоящей от оси вращения ск-ть , следовательно:

    Кин-ий момент вращения тела отн-но оси вращения равен произведению момента инерции тела отн-но этой оси

    на угловую скорость тела:

    20. кол-вом дв.мат.точки - вектор m υ размерность [кг*м\с]=[Н*с]

    Теорема: дифференциал по времени от кол-ва дв.мат.точки равна геометрич.сумме действующей на не сил.

    Домножим на dt , : d(mυ). Полный импульс S =домножим на dt получим интегральную конечную форму записи теоремы: m . –Изменение кол-ва дв.мат.точки за некоторый промежуток времени равно геометр.сумме импульсов сил,действующих на точку за тот же промежуток времени. Аналит.форма записи: m m m

    (21). Теорема об изменении кинетического момента механической системы. Закон сохранения кинетического момента.

    Т-ма моментов для с-мы: производная по времени от главного момента кол-ств дв-ия с-мы отн-но некоторого неподвижного центра равна сумме моментво всех внешних сил с-мы отн-но того же центра. Проекция на оси:

    Закон сохранения кин-ого момента:

    "

    Количество движения

    мера механического движения, равная для материальной точки произведению её массы m на скорость v. К. л. mv - величина векторная, направленная так же, как скорость точки. Иногда К. д. называют ещё импульсом. При действии силы К. д. точки изменяется в общем случае и численно и по направлению; это изменение определяется вторым (основным) законом динамики (см. Ньютона законы механики).

    К. д. Q механической системы равно геометрической сумме К. д. всех её точек или произведению массы М всей системы на скорость v c её центра масс: Q = ∑m k v k =Mv с. Изменение К. д. системы происходит под действием только внешних сил, то есть сил, действующих на систему со стороны тел, в эту систему не входящих. Согласно теореме об изменении К. д. Q 1 -Q 0 = ∑S k e . где Q 0 и Q 1 - К. д. системы в начале и в конце некоторого промежутка времени, S k e - импульсы внешних сил F k e (см. Импульс силы) за этот промежуток времени (в дифференциальной форме теорема выражается уравнением Динамика), в частности в теории Удар а.

    Для замкнутой системы, т. е. системы, не испытывающей внешних воздействий, или в случае, когда геометрическая сумма действующих на систему внешних сил равна нулю, имеет место закон сохранения К. д. При этом К. д. отдельных частей системы (например, под действием внутренних сил) могут изменяться, но так, что величина Q = ∑m к v k остаётся постоянной. Этот закон объясняет такие явления, как реактивное движение, отдачу (или откат) при выстреле, работу гребного винта или вёсел и др. Например, если рассматривать ружье и пулю как одну систему, то давление пороховых газов при выстреле будет для этой системы силой внутренней и не может изменить К. д. системы, равное до выстрела нулю. Поэтому, сообщая пуле К. д. m 1 v 1 , направленное к дульному срезу, пороховые газы сообщат одновременно ружью численно такое же, но противоположно направленное К. д. m 2 v 2 , что вызовет отдачу; из равенства m 1 v 1 = m 2 v 2 (где v 1 , v 2 - численные значения скоростей) можно, зная скорость v 1 ; пули при вылете из ствола, найти наибольшую скорость v 2 отдачи (а для орудия - отката).

    При скоростях, близких к скорости света с, К. д., или импульс, свободной частицы определяется формулой р = mv/ β=v/c; когда vc, эта формула переходит в обычную: р = mv (см. Относительности теория).

    К. д. обладают и Поля физические (электромагнитные, гравитационные и др.). К. д. поля характеризуются плотностью К. д. (отношением К. д. элементарного объёма к этому объёму) и выражается через напряжённость поля или его потенциал и т.д.

    С. М. Тарг.


    Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

    Смотреть что такое "Количество движения" в других словарях:

      Мера механического движения, равная для материальной точки произведению ее массы m на скорость v. Количество движения mv величина векторная, направленная так же, как скорость точки. Количество движения называется также импульсом … Большой Энциклопедический словарь

      - (импульс), мера механич. движения, равная для материальной точки произведению её массы т на скорость v. К. д. mv величина векторная, направленная так же, как скорость точки. Под действием силы К. д. точки изменяется в общем случае и численно, и… … Физическая энциклопедия

      См. Импульс. Философский энциклопедический словарь. 2010 … Философская энциклопедия

      количество движения - импульс — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия Синонимы импульс EN momentumlinear momentum … Справочник технического переводчика

      Мера механического движения, равная для материальной точки произведению её массы m на скорость v. Количество движения mv величина векторная, совпадающая по направлению с вектором скорости v. Количество движения называется также импульсом. * * *… … Энциклопедический словарь

      Импульс (количество движения) аддитивный интеграл движения механической системы; соответствующий закон сохранения связан с фундаментальной симметрией однородностью пространства. Содержание 1 История появления термина 2 «Школьное» определение… … Википедия

      количество движения - judesio kiekis statusas T sritis Standartizacija ir metrologija apibrėžtis Dydis, išreiškiamas kūno masės ir jo judėjimo greičio sandauga. atitikmenys: angl. kinetic moment; kinetic momentum; linear momentum; quantity of motion vok.… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

      количество движения - judesio kiekis statusas T sritis fizika atitikmenys: angl. kinetic momentum; momentum; quantity of motion vok. Bewegungsgröße, f; Impuls, m rus. импульс, m; количество движения, n pranc. impulsion, f; quantité de mouvement, f … Fizikos terminų žodynas

      Количество движения - то же, что импульс мера механического движения, равная произведению массы тела т на его скорость v. Вектор количества движения совпадает по направлению с вектором скорости … Начала современного естествознания

      Мера механич. движения, равная для материальной точки произведению её массы от на скорость v. К. д. mv величина векторная, совпадающая по направлению с вектором скорости v. К. д. наз. также импульсом … Естествознание. Энциклопедический словарь

    Книги

    • Настольная игра "Правила дорожного движения" (8741) , Будишевский Николай. Безопасность дорожного движения обеспечивается каждым пешеходом и водителем. С самого раннего детства надо изучить Правила Дорожного Движения и тщательно соблюдать их. Наша игра познакомит…

    Например:

    1. Определить количество движения механической системы:

    Т.к. (центр масс не движется).

    б) Теорема об изменении количества движения (дифференциальный вид).

    Выведем ее из теоремы о движении центра масс.

    Для ν -той материальной точки по второму закону Ньютона:

    Так как. масса постоянна, то ее можно внести под знак производной. Получим:

    Просуммировав по всем материальным точкам, получим:

    Учтем, что сумма всех внутренних сил механической системы - по третьему закону Ньютона.

    Получим теорему об изменении количества движения механической системы в дифференциальном виде:

    Формулировка: первая производная по времени от количества движения механической системы равна векторной сумме всех внешних сил, действующих на систему, т.е. равна главному вектору всех внешних сил механической системы.

    Эти формулы математически показывают, что только внешние силы влияют на движение центра масс и изменение количества движения механической системы, внутренние силы изменить количество движения или движение центра масс не могут.

    в) Теорема импульсов (интегральный вид) теоремы об изменении количества движения.

    Определение:

    1) элементарным импульсом силы называется произведение этой силы на дифференциал времени:

    2) импульсом силы за какой-либо промежуток времени называется интеграл вида:

    Теорема импульсов: выводится из теоремы об изменении количества движения.

    Разделяя переменные, получим:

    Интегрируем:

    Учитывая, что правая часть уравнения представляет собой сумму импульсов всех внешних сил, получим:

    Формулировка: Изменение количества движения за какой – либо промежуток времени равно векторной сумме импульсов всех внешних сил, приложенных к системе в этот промежуток времени.

    Эта формулаозначает, что импульс силы и количество движения измеряется в одних и тех же размерностях единиц.

    ; , поэтому количество движения в настоящее время называют импульсом.

    г) Закон сохранения количества движения:

    1) Если, , то из теоремы следует, что: , .

    Формулировка: если векторная сумма всех внешних сил системы равна нулю, то количество движения системы остается постоянным по величине и направлению.

    2) Если, , то , .

    Формулировка: если алгебраическая сумма проекций всех внешних сил системы, на какую – либо ось равна нулю, то проекция количества движения на эту ось остается постоянной.

    4. ОБЩИЕ ТЕОРЕМЫ ДИНАМИКИ МАТЕРИАЛЬНОЙ ТОЧКИ И МЕХАНИЧЕСКОЙ СИСТЕМЫ. ТЕОРЕМА ОБ ИЗМЕНЕНИИ КИНЕТИЧЕСКОГО МОМЕНТА

    Рассматриваемые вопросы:

    Общие теоремы динамики механической системы. Теорема об изменении кинетического момента. Момент количества движения материальной точки относительно полюса: алгебраическое значение, направление вектора. Момент количества движения материальной точки относительно оси. Момент количества движения относительно начала координат. Кинетический момент механической системы относительно точки и оси. Кинетический момент вращающегося тела относительно оси вращения. Теорема об изменении кинетического момента. Закон сохранения кинетического момента.


    4.1 Момент количества движения материальной точки относительно центра (точки, полюса).

    а) Определение: моментом количества движения материальной точки относительно какого-либо центра называется векторное произведение радиус – вектора этой точки на её количества движения.

    б) Направление: момент количества движения материальной точки направлен перпендикулярно плоскости траектории движения точки таким образом, чтобы с конца векторного момента можно было видеть направление скорости по отношению к моментной точке против часовой стрелки.

    в) Алгебраическое значение момента количества движения точки.

    Модуль момента количества движения материальной точки:

    Алгебраическое значение – это произведение количества движения материальной точки на плечо, взятое со знаком плюс или минус.

    Значение момента положительное, если он направлен относительно моментной точки против часовой стрелки.

    Значение момента отрицательное, если он направлен относительно моментной точки по часовой стрелке.

    Значение момента равно нулю, если моментная точка лежит на линии скорости.

    4.2 Момент количества движения относительно оси.

    а) Определение: моментом количества движения точки относительно оси называется проекция на эту ось векторного момента количества движения, вычисленного относительно какой – либо точки, лежащей на этой оси.

    Алгебраическое значение аналогично:

    Значение момента количества движения положительное, если он направлен против часовой стрелки, если смотреть с положительного направления оси.

    Значение момента количества движения отрицательное, если он направлен по часовой стрелке, если смотреть с положительного направления оси.

    Значение момента количества движения равно нулю, если скорость направлена параллельно оси или пересекает эту ось.

    Проекции на оси координат:

    4.3 Кинетический момент механической системы относительно полюса и оси.

    а) Кинетический момент механической системы относительно полюса.

    Кинетическим моментом механической системы относительно центра (полюса, точки) называется векторная сумма моментов количества движения всех точек системы относительно этого же центра:

    б) Кинетический момент механической системы относительно оси:

    Кинетическим моментом механической системы относительно оси называется алгебраическая сумма моментов количества движения всех его точек относительно этой же оси:

    Кинетический момент механической системы относительно оси Z:

    Таким образом - кинетический момент механической системы это главный момент количества движения системы.

    4.4 Кинетический момент вращающегося тела относительно оси вращения.

    Рассмотрим тело вращения. Рассмотрим движение материальной точки, масса которой m ν , а линейная скорость .

    По определению кинетического момента относительно полюса:

    Кинетический момент направлен перпендикулярно радиус-вектору ().

    Спроектировав кинетический момент на ось , получим:

    Учитывая, что при вращательном движении линейная скорость определяется по формуле Эйлера, получим:

    Модуль скорости точки при вращательном движении:

    где , сos (90 0 - ) =sin

    Подставив (98) в формулу (96), получим:

    Кинетический момент относительно оси вращения определяется по формуле:

    4.5 Вывод теоремы об изменении кинетического момента.

    По второму закону Ньютона для ν -той точки:

    Умножив обе части равенства почленно, векторно на , получим:

    Преобразуем:

    Суммируя по ν т.е. по всем материальным точкам механической системы получим:

    Слева под знаком суммы получаем кинетический момент механической системы относительно полюса О:

    Справа под знаком суммы получаем сумму моментов всех внешних и внутренних сил механической системы относительно полюса О:

    По третьему закону Ньютона сумма моментов всех внутренних сил относительно полюса О равна нулю,

    Тогда получим теорему в виде:

    Формулировка: первая производная от кинетического момента по времени, относительно какого – либо центра равна векторной сумме моментов всех внешних сил, действующих на систему относительно этого же центра.

    Теорема об изменении кинетического момента относительно оси вращения:

    Формулировка: первая производная по времени от кинетического момента, относительно какой – либо оси равна алгебраической сумме моментов всех внешних сил системы относительно этой же оси.

    Кинетический момент для твердого тела относительно оси вращения:

    .

    2) Если , то .

    Формулировка : если алгебраическая сумма моментов всех внешних сил системы, относительно какой – либо оси равна нулю, то кинетический момент относительно этой оси остается постоянным.

    Например:

    При вращении фигуриста на льду все действующие силы параллельны оси Z , а это значит, что кинетический момент относительно оси Z равен нулю.

    Для увеличения угловой скорости фигурист прижимает руки к туловищу, тем самым уменьшая момент инерции тела относительно оси вращения.

    Для уменьшения угловой скорости фигурист расставляет руки в стороны, тем самым увеличивая момент инерции тела относительно оси вращения.

    5. ОБЩИЕ ТЕОРЕМЫ ДИНАМИКИ МАТЕРИАЛЬНОЙ ТОЧКИ И