Сложное движение точки. Теорема Кориолиса

§ 2. 5. Движение: абсолютное, относительное, переносное. Теорема Эйлера. Угловая скорость.

Дополнительно к неподвижным осям Oxyz (система S) введем в рассмотрение некоторое подвижное твердое тело и неизменно связанную с ним систему прямоугольных осей координат O’x’y’z’ (система S’).

Движение точки относительно подвижной системы осей S’ называется относительным движением.

Движение точки относительно неподвижных осей S называется абсолютным движением.

Переносным движением точки за интервал времени (t,t+Dt) называется то движение по отношению к осям S, которая эта точка имела бы, если бы в момент времени t и на интервал (t,t+Dt) она была неизменно связана с подвижной системой осей и, следовательно, перемещалась бы вместе с этой системой.

Траектория, скорость и ускорение называются абсолютными, относительными или переносными, смотря по тому, относятся ли они к движению абсолютному, относительному или переносному.

Теорема Эйлера: Если относительно системы S система S" имеет одну неподвижную точку, то перемещение S" из одного произвольного положения в любое другое может быть совершено одним поворотом на определенный угол относительно оси, проходящей через эту неподвижную точку.

Для доказательства достаточно показать возможность перевода одним поворотом дуги, например, .

Проведем два экватора: a, перпендикулярный середине x 1 "x 2 ", и b, перпендикулярный середине z 1 "z 2 ". Получим две точки пересечения этих экваторов – с и d.

Dx 1 "z 1 "d = Dz 2 "x 2 "d

(так как x 1 "z 1 " = x 2 "z 2 ", а x 1 "d = x 2 "d в силу того, что точка d лежит на экваторе, перпендикулярном середине x 1 "x 2 ",

z 1 "d = z 2 "d по той же причине)

Таким образом, Ðx 1 "dz 1 " = Ðz 2 "dx 2 " и угол между дугами x 1 "d и x 2 "d равен углу между дугами z 1 "d и z 2 "d, то есть нужно повернуть x 1 "z 1 " относительно оси dO"c на угол x 1 "dz 1 " (или равный ему z 2 "dx 2 ")

Теорема Эйлера справедлива и для конечных поворотов и для бесконечно малых. Хотя последовательность бесконечно малых поворотов может быть любой – результат будет тем же, конечные же повороты не коммутируют. Это тем более справедливо для бесконечно малых поворотов, чем ближе дуги, описываемые какой-либо точкой, к хордам, соединяющим концы дуг.

При рассмотрении задач о движении тела с одной закрепленной точкой, которые имеют большое практическое значение, для определения (фиксации) положения системы S" относительно S широко используются три угла Эйлера.

Пересечение плоскостей O"xy и O"x"y" дает прямую, которую называют линией узлов (орт линии узлов - ). Первый угол Эйлера j - угол между осью O"x и линией узлов. Второй угол y - угол между линией узлов и осью O"x". Третий угол q - угол между осями O"z и O"z".

Эти три угла однозначно определяют положение системы S" относительно S

Таким образом, при бесконечно малом повороте системы S" относительно S на углы dj,dy,dq (некоторые из них могут быть равными нулю) их можно заменить одним поворотом на угол dc вокруг некоторой оси, проходящей через точку O".

Введем в рассмотрение вектор бесконечно малого поворота:

(здесь направлен по оси вращения по правилу правого винта)

Величина и направление вектора dc при сложном движении могут изменяться. Ось называется осью мгновенного вращения. Посмотрим, что происходит с ортами системы S" при ее повороте на угол

§ 2. 6. Сложное движение точки.

продифференцировав это соотношение по времени, получим:

Абсолютная скорость точки (относительно системы S),

Скорость начала координат S" относительно S,

Не является скоростью точки М относительно системы S", так как орты этой системы являются функциями времени.

,

используя формулы (2.5.1) будем иметь:

Последнее слагаемое означает, что производная берется при неизменных ортах системы O’x’y’z’, .

Теперь для скоростей имеем:

здесь v h -переносная, v – абсолютная, v’ – относительная скорость точки, то есть получена связь этих скоростей. Переносная скорость состоит из двух слагаемых: первое присутствует в том случае, если подвижная система отсчета движется поступательно, второе появляется в том случае, если подвижная система отсчета совершает вращение.

Для получения связи ускорений продифференцируем по времени соотношение для скоростей:

Абсолютное ускорение, - ускорение начала координат S’ относительно S.

Движется относительно какой-либо системы отсчёта, а та, в свою очередь, движется относительно другой системы отсчёта. При этом возникает вопрос о связи движений точки в этих двух СО.

Обычно выбирают одну из СО за базовую («абсолютную»), другую называют «подвижной» и вводят следующие термины:

  • абсолютное движение - это движение точки/тела в базовой СО.
  • относительное движение - это движение точки/тела относительно подвижной системы отсчёта.
  • переносное движение - это движение второй СО относительно первой.

Также вводятся понятия соответствующих скоростей и ускорений . Например, переносная скорость - это скорость точки, обусловленная движением подвижной системы отсчёта относительно абсолютной. Другими словами, это скорость точки подвижной системы отсчёта, в данный момент времени совпадающей с материальной точкой.

Оказывается, что при получении связи ускорений в разных системах отсчёта возникает необходимость ввести ещё одно ускорение, обусловленное вращением подвижной системы отсчёта:

В дальнейшем рассмотрении, базовая СО предполагается инерциальной , а на подвижную никаких ограничений не накладывается.

Классическая механика

Кинематика сложного движения точки

Скорость

.

Основные задачи кинематики сложного движения заключаются в установлении зависимостей между кинематическими характеристиками абсолютного и относительного движений точки (или тела) и характеристиками движения подвижной системы отсчета, то есть переносного движения. Для точки эти зависимости являются следующими: абсолютная скорость точки равна геометрической сумме относительной и переносной скоростей, то есть

.

Ускорение

Связь ускорений можно найти путём дифференцирования связи для скоростей, не забывая, что координатные векторы подвижной системы координат также могут зависеть от времени.

Абсолютное ускорение точки равно геометрической сумме трёх ускорений - относительного, переносного и кориолисова , то есть

.

Кинематика сложного движения тела

Для твёрдого тела, когда все составные (то есть относительные и переносные) движения являются поступательными , абсолютное движение также является поступательным со скоростью, равной геометрической сумме скоростей составных движений. Если составные движения тела являются вращательными вокруг осей, пересекающихся в одной точке (как, например, у гироскопа), то результирующее движение также является вращательным вокруг этой точки с мгновенной угловой скоростью, равной геометрической сумме угловых скоростей составных движений. Если же составными движениями тела являются и поступательные, и вращательные, то результирующее движение в общем случае будет слагаться из серии мгновенных винтовых движений.

Рассчитать взаимосвязь скоростей разных точек твёрдого тела в разных системах отсчёта можно с помощью комбинирования формулы сложения скоростей и формулы Эйлера для связи скоростей точек твёрдого тела . Связь ускорений находится простым дифференцированием полученного векторного равенства по времени.

Динамика сложного движения точки

При рассмотрении движения в неинерциальной СО нарушаются первые 2 закона Ньютона. Чтобы обеспечить формальное их выполнение, обычно вводятся дополнительные, фиктивные (не существующие на самом деле), силы инерции: центробежная сила и сила Кориолиса . Выражения для этих сил получаются из связи ускорений (предыдущий раздел).

Релятивистская механика

Скорость

При скоростях, близких к скорости света, преобразования Галилея не являются точно инвариантными и классическая формула сложения скоростей перестаёт выполняться. Вместо этого, инвариантными являются преобразования Лоренца, а связь скоростей в двух инерциальных СО получается следующей:

в предположении, что скорость направлена вдоль оси х системы S. Легко убедиться, что в пределе нерелятивистских скоростей преобразования Лоренца сводятся к преобразованиям Галилея.

Литература

§ 20 . Относительное, переносное и абсолютное

движение точки

Сложным движением точки называется такое ее движение, при кото­ром она движется относительно системы отсчета, перемещающейся по отношению к некоторой другой системе отсчета, принятой за непод­вижную. Например, можно считать, что пассажир, идущий по вагону движущегося поезда, со­вершает сложное движение по отношению к полотну дороги, состоящее из движения пассажира по отношению к вагону (подвижная система отсчета ) и дви­жения пассажира вместе с вагоном по отношению к полотну дороги (неподвижная система отсчета ).

Движение точки по отношению к подвижной системе ко­ординат называется относительным движением точки . Скорость и ускорение этого движения называют относитель­ной скоростью и относительным ускорением и обозначают и .

Движение точки, обусловленное движением подвижной системы координат, называется переносным движением точки .

Переносной скоростью и переносным ускорением точки на­зывают скорость и ускорение той, жестко связанной с под­вижной системой коор­динат точки, с которой совпадает в дан­ный момент времени движущаяся точка, и обозначают и .

Движение точки по отношению к неподвижной системе координат называ­ется абсолютным или сложным . Скорость и ускорение точки в этом движении называют абсолютной скоростью и абсолютным ускорением и обозначают и .

В приведенном выше примере движение пассажира относительно вагона будет относительным, а скорость – относительной скоростью пассажира; движение вагона по отношению к полотну дороги будет для пассажира переносным движением, а скорость вагона, в котором находится пассажир, будет в этот момент его переносной скоростью; наконец, движение пассажира по отношению к полотну будет его абсолютным движением, а скорость – абсолютной скоростью.

§ 21 .Определение скорости точки при сложном

движении

Пусть имеется неподвижная система отсчета по отношению к кото­рой движется подвижная система отсчета . Относительно подвижной системы координат движет­ся точка (рис. 2.26). Уравнение движения точки , находящейся в сложном движении, можно задать векторным способом

,(2.67)

где - радиус-вектор точки , определяющий ее положение относительно

не­подвижной системы отсчета ;

Радиус-вектор, определяющий положение начала отсчета подвижной

системы координат ;

Радиус-вектор рассматриваемой точки , определяющий ее

положение относительно подвижной системы координат.

Пустькоординаты точки в подвижных осях. Тогда

,(2.68)

где - единичные векторы, направленные вдоль под­вижных осей . Подставляя (2.68) в равенство (2.67), полу­чим:

.(2.69)

При относительном движении координаты изменя­ются с течением времени. Чтобы найти скорость относитель­ного движения, нужно продиффе­ренцировать радиус-вектор по времени, учитывая его изменение только за счет относи­тельного движе­ния, то есть только за счет изменения коор­динат , а подвижную систему координат предполагать при этом неподвижной, то есть вектора считать не зависящими от времени. Дифференцируя равенство (2.68) по времени с учетом сде­ланных оговорок, получим относитель­ную скорость:

, (2.70)

где точки над величинами означают производные от этих ве­личин по времени:

, , .

Если относительного движения нет, то точка будет двигаться вместе с подвижной системой - координат и ско­рость точки будет равна переносной скорости. Таким обра­зом, выражение для переносной скорости можно полу­чить, если продифференцировать по времени радиус-вектор , считая не за­висящими от времени:

.(2.71)

Выражение для абсолютной скорости найдем, дифферен­цируя по времени , учитывая, что от времени зависят относительные координатыи орты подвижной системы координат:

.(2.72)

В соответствии с формулами (2.70), (2.71) первая скобка в (2.72) есть переносная ско­рость точки, а вторая - относитель­ная. Итак,

.(2.73)

Равенство (2.73) выражает теорему о сложении скоростей : абсолютная скорость точки равна геометрической сумме переносной и относительной скоро­стей.

Задача 2.9. Поезд движется по прямоли нейному горизонтальному пути с постоянной скоростью . Пассажир видит из окна вагона траектории капель дождя наклоненными к вертикали под углом . Определить абсолютную скорость падения дождевых капель отвесно падающего дождя, пренебрегая трением капель о стекло.

Решение. Капли дождя имеют абсолютную скорость

где - относительная скорость капли при ее движении по стеклу вагона;

Переносная скорость капли, равная скорости движения поезда.

Получившийся параллелограмм скоростей (рис. 2.27) диагональ делит на два равных треугольника. Рассмотрев любой из этих треугольников, находим

.

Переводим полученную скорость падения капель в :

.

§ 22 .Определение ускорения точки при сложном

движении

Выражение для относительного ускорения точки можно получить, диффе­ренцируя относительную скорость (2.70), учи­тывая ее и зменение только за счет относительного движения, то есть за счет изменения относительных координат точки , , . Вектора же следует считать постоянными, так как движение не­движной системы координат не учитывается при определении относительной скорости и относительного ускорения точки. Итак, имеем

,(2.74)

Переносное ускорение получим, дифференцируя по време­ни равенство (2.71), считая, что точка покоится по отношению к подвижной системе координат, т. е. что относительные координаты точки , , не зависят от времени.

.(2.75)

Абсолютное ускорение получим, дифференцируя выраже­ние для абсолютной скорости (2.72), учитывая, что с течени­ем времени изменяются как относительные координаты , , точки, так и орты подвижной системы координат

.(2.76)

Видно, что первая скобка в (2.76) есть переносное ускорение, третья - относи­тельное ускорение. Вторая скобка есть до­полнительное или кориолисово ускорение :

.(2.77)

Итак, равенство (2.76) можно записать в виде

.(2.78)

Эта формула и выражает теорему Кориолиса : в случае непоступательного переносного движения абсолютное ускорение точки равно векторной сумме

переносного, от­носительного и поворот­ного ускорений.

Преобразуем формулу (2.77) дляускорения Кориолиса. Для производных единичныхвекторов подвижной системы координат имеют место следующие формулы Пуассона :

; ; .(2.79)

Здесь - вектор мгновенной угловой скорости подвижной системы коорди­нат. Знаком обозначено векторное произ­ведение векторов.

Подставляя формулы (2.79) в (2.77), получим:

Выражение в скобках есть не что иное, как относитель­ная скорость (см. (2.70)). Окончательно получим:

.(2.80)

Итак, ускорение Кориолиса равно удвоенному векторно­му произведению мгновенной угловой скорости подвижной системы координат на вектор отно­сительной скорости .

По общему правилу определения направления, векторного произведения имеем: ускорение Кориолиса направлено пер­пендикулярно плоскости, прохо­дящей через вектора и в ту сторону, откуда поворот вектора к вектору на меньший угол виден против хода часовой стрелки (рис. 2.28).

Из формулы (2.80) вытекает также, что величина ускоре­ния Кориолиса

.(2.81)

Отсюда следует, что ускорение Кориолиса равно нулю в трех случаях :

1) если , т. е. в случае поступательного переносного движения или в моменты обращения в нуль угловой скорости непоступательного перенос­ного движения;

2) если , т.е. в случае относительного покоя точки или в моменты об­раще­ний в нуль относительной скорости точки;

3) если , т. е. в случае, когда вектор относительной скорости то­чки параллелен вектору угловой скорости переносного движения , как, напри­мер, при движении точки вдоль образующей цилиндра, вращающе­гося вокруг своей оси.

Задача 2.10. По железнодорожному п ути, проложенному по параллели северной ши­роты, движется тепловоз со скоростью с запада на восток. Найти корио­лисово ускорение тепловоза.

Решение. Пренебрегая размерами тепло­воза, будем рассматривать его как некоторую точку (точка на рис. 2.29). Точка совершает сложное движение. За переносное движение примем враща­тельное движение точки вместе с Землей, а за относительное движение – движение этой точки по отношению к Земле с постоянной скоростью .

Величина ускоре­ния Кориолиса согласно (2.81) равна

,

где - угловая скорость вращения Земли.

Найдем угловую скорость вращения Земли. За сутки Земля делает один оборот. Угол, соответствующий одному обороту, равен и число секунд в сутках равно , отсюда

.

Положение и направление вектора ускорения Кориолиса определяем по об­щему правилу определения направления векторного произведения. Вектор ускорения Кориолиса находится на прямой , так как он должен быть перпендикулярен векторам и , и направлен в сторону противополож­ную направлению векторов и .

Сложное движение точки

Основные понятия

Во многих задачах движение точки приходится рассматривать относительно двух (и более) систем отсчета, движущихся друг относительно друга.

В простейшем случае сложное движение точки состоит из относительного и переносного движений. Определим эти движения.

Рассмотрим две системы отсчета движущиеся друг относительно друга. Одну систему отсчета O 1 x 1 y 1 z 1 примем за основную и неподвижную. Вторая система отсчета Oxyz будет двигаться относительно первой.

Движение точки относительно подвижной системы отсчета Oxyz называется относительным. Характеристики этого движения, такие как, траектория, скорость и ускорение, называются относительными. Их обозначают индексом r .

Движение точки относительно основной неподвижной системы отсчета O 1 x 1 y 1 z 1 называется абсолютным (или сложным). Траектория, скорость и ускорение этого движения называются абсолютными. Их обозначают без индекса.

Переносным движением точки называется движение, которое она совершает вместе с подвижной системой отсчета, как точка, жестко скрепленная с этой системой в рассматриваемый момент времени. Вследствие относительного движения движущаяся точка в различные моменты времени совпадает с различными точками тела S, с которым скреплена подвижная система отсчета. Переносной скоростью и переносным ускорением являются скорость и ускорение той точки тела S, с которой в данный момент совпадает движущаяся точка. Переносные скорость и ускорение обозначают индексом e .

Если траектории всех точек тела S, скрепленного с подвижной системой отсчета, изобразить на рисунке, то получим семейство линий – семейство траекторий переносного движения точки М. Вследствие относительного движения точки М в каждый момент времени она находится на одной из траекторий переносного движения.

Одно и то же абсолютное движение, выбирая различные подвижные системы отсчета, можно считать состоящим из разных переносных и соответственно относительных движений.

Сложение скоростей

Определим скорость абсолютного движения точки М, если известны скорости абсолютного и переносного движений этой точки.

За малый промежуток времени вдоль траектории точка М совершит относительное перемещение, определяемое вектором . Сама кривая , двигаясь вместе с подвижными осями, перейдет за тот же промежуток времени в новое положение Одновременно та точка кривой , с которой совпадала точка М, совершит переносное перемещение . В результате точка совершит перемещение .

Деля обе части равенства на и переходя к пределу, получим

Сложение ускорений при поступательном переносном движении.

Определим ускорение абсолютного движения точки в частном случае поступательного переносного движения.

Справедлива теорема . Если подвижная система отсчета движется поступательно относительно неподвижной , то все точки тела, скрепленного с этой системой, имеют одинаковые скорости и ускорения, равные скорости и ускорению начала координат подвижной системы О. Следовательно, для скорости и ускорения переносного движения имеем

Выразим относительную скорость в декартовых координатах

Подставляя в теорему о сложении скоростей значения переносной и относительной скоростей получаем

По определению

До сих пор мы изучали движение точки или тела по отношению к одной заданной системе отсчета. Однако в ряде случаев при реше­нии задач механики оказывается целесообразным (а иногда и не­обходимым) рассматривать движение точки (или тела) одновременно по отношению к двум системам отсчета, из которых одна считается основной или условно неподвиж­ной, а другая определенным образом движется по отношению к первой. Движение, совершаемое при этом точкой (или телом), называют со­ставным или сложным . Например, шар, катящийся по палубе движу­щегося парохода, можно считать совершающим по отношению к бе­регу сложное движение, состоящее из качения по отношению к палубе (подвижная система отсчета), и движение вместе с палубой парохода по отношению к берегу (не­подвижная система отсчета). Таким путем сложное движение шара разлагается на два более простых и более легко исследуемых.

Рис.48

Рассмотрим точку М , движущуюся по отношению к подвижно системе отсчета Oxyz , которая в свою очередь как-то движется отно­сительно другой системы отсчета , которую называем основ­ной или условно неподвижной (рис. 48). Каждая из этих систем отсчета связана, конечно, с определенным телом, на чертеже не по­казанным. Введем следующие определения.

1. Движение, совершаемое точкой М по отношению к подвиж­ной системе отсчета (к осям Oxyz ), называется относительным движением (такое движение будет видеть наблюдатель, связанный с этими осями и перемещающийся вместе с ними). Траектория АВ , описываемая точкой в относительном движении, называется относи­тельной траекторией. Скорость точки М по отношению к осям Oxyz называется относительной скоростью (обозначается ), a ускорение - относительным ускорением (обозначается ). Из определения следует, что при вычислении и можно движение осей Oxyz во внимание не принимать (рассматривать их как непод­вижные).

2. Движение, совершаемое подвижной системой отсчета Oxyz (и всеми неизменно связанными с нею точками пространства) по отно­шению к неподвижной системе , является для точки М пере­носным движением .

Скорость той неизменно связанной с подвижными осями Oxyz точки m , с которой в данный момент времени совпадает движущаяся точка М , называется переносной скоростью точки М в этот момент (обозначается ), а ускорение этой точки m - переносным ускорением точки М (обозначается ). Таким образом,

Если представить себе, что относительное движение точки про­исходит по поверхности (или внутри) твердого тела, с которым жестко связаны подвижные осиOxyz , то переносной скоростью (или ускорением) точки М в данный момент времени будет скорость (или ускорение) той точки т тела, с которой в этот момент совпадает точка М .

3. Движение, совершаемое точкой по отношению к неподвижной системе отсчета , называется абсолютным или сложным. Траектория CD этого движения называется абсолютной траекто­рией, скорость - абсолютной скоростью (обозначается ) и ускорение - абсолютным ускорением (обозначается ).

В приведенном выше примере движение шара относительно палу­бы парохода будет относительным, а скорость - относительной ско­ростью шара; движение парохода по отношению к берегу будет для шара переносным движением, а скорость той точки палубы, которой в данный момент времени касается шар будет в этот момент его пере­носной скоростью; наконец, движение шара по отношению к берегу будет его абсолютным движением, а скорость - абсолютной ско­ростью шара.

При исследовании сложного движения точки полезно применять «Правило остановки». Для того, чтобы неподвижный наблюдатель увидел относительное движение точки, надо остановить переносное движение.

Тогда будет происходить только относительное движение. Относительное движение станет абсолютным. И наоборот, если остановить относительное движение, переносное станет абсолютным и неподвижный наблюдатель увидит только это переносное движение.

В последнем случае, при определении переносного движения точки, обнаруживается одно очень важное обстоятельство. Переносное движение точки зависит от того в какой момент будет остановлено относительное движение, от того, где точка находится на среде в этот момент. Так как, вообще говоря, все точки среды движутся по-разному. Поэтому логичнее определять переносное движение точки как абсолютное движение той точки среды, с которой совпадает в данный момент движущаяся точка.

22.Teopeмa сложения скоростей.

Пусть некоторая точка М со­вершает движение по отношению к системе отсчета Oxyz , которая са­ма движется произвольным образом по отношению к неподвижной систе­ме отсчета , (рис.49).

Конечно, абсолютное движение точки М определяется уравнениями

Относительное движение – в движущихся осях уравнениями

Рис. 10.3.

Уравнений, определяющих переносное движение точки, не может быть вообще. Так как, по определению, переносное движение точки М – это движение относительно неподвижных осей той точки системы , с которой совпадает точка в данный момент. Но все точки подвижной сис­темы движутся по-разному.



Поло­жение подвижной системы отсчета может быть также определено, если задать положение точки О радиусом-вектором , проведенным из начала неподвижной системы отсчета, и направления единичных векторов подвижных осей Оx, Oy, Oz .

Рис.49

Произвольное переносное движение подвижной системы отсчета слагается из поступательного движения со скоростью точки О и движения вокруг мгновенной оси вращения ОР , походящей через точку О , с мгновенной угловой скоростью . Вследствие переносного движения подвижной системы отсчета радиус-вектора и направления единичных векторов изменяются. Если векторы заданы в функции времени, то переносное движение подвижной системы отсчета вполне определено.

Положение точки М по отношению к подвижной системе отсчета можно определить радиусом-вектором

где координаты x, y, z точки М изменяются с течением времени вследствие движения точки М относительно подвижной системы отсчета. Если радиус-вектор задан в функции времени, то относительное движение точки М , т.е. движение этой точки относительно подвижной системы отсчета, задано.

Положение точки М относительно неподвижной системы отсчета , может быть определено радиусом-вектором . Из рис.49 видно, что

Если относительные координаты x,y,z точки М и векторы определены в функции времени, то слагающееся из относительного и переносного движений составное движение точки М , т.е. движение этой точки по отношению к неподвижной системе отсчета, также надо считать заданным.

Скорость составного движения точки М , или абсолютная скорость этой точки, равна, очевидно, производной от радиуса-вектора точки M по времени t

Поэтому, дифференцируя равенство (1) по времени t , получим

Разобьем слагаемые в правой части этого равенства на две группы по следующему признаку. К первой группе отнесем те слагаемые, которые содержат производные только от относительных координат x,y,z, а ко второй - те слагаемые, которые содержат производные от векторов , т.е. от величин, изменяющихся только вследствие переносного движения подвижной системы отсчета

Каждая из групп слагаемых, обозначенных через и , представляет собой, по крайней мере, по размерности некоторую скорость. Выясним физический смысл скоростей и .

Скорость , как это следует из равенства (3), вычисляется в предположении, что изменяются только относительные координаты x,y,z точки М , но векторы остаются постоянными, т.е. подвижная система отсчета Oxyz как бы условно считается неподвижной. Итак, скорость представляет собой относительную скорость точки М .

Скорость вычисляется так, как будто бы точка М не двигалась относительно подвижной системы отсчета, так как производные x,y,z в равенство (4) не входят. Поэтому скорость представляет собой переносную скорость точки М .

Итак, . (5)

Это равенство выражает теорему сложения скоростей в случае, когда переносное движение является произвольным: абсолютная скорость точки М равна геометрической сумме переносной и относительной скоростей этой точки.

Пример 13. Колечко М движется по вращающемуся стержню так, что (см) и (рад).

Рис.50

Ранее было установлено, что тра­ектория относительного движения – прямая линия, сов­падающая со стерж­нем, и движение это определяется уравнением . Траектория пе­реносного движения точки М в мо­мент времени t – окружность радиуса .

Поэтому относительная ско­рость . И направлена по ка­сательной к траектории вдоль стержня (рис.50). Переносная скорость колечка, как при вращении вокруг оси, . Направлен вектор этой скорости по касательной к траектории переносного движения, перпендикулярно стержню.

Абсолютная скорость колечка . Величина ее, т.к.

23. Теорема сложения ускорений. Ускорение Кориолиса.

Ускорение составного движения точки М , или абсолютное ускорение этой точки, равно, очевидно, производной от абсолютной скорости точки М по времени t

Поэтому, дифференцируя равенство по времени, получим

Разделим слагаемые правой части этого равенства на три группы.

К первой группе отнесем слагаемые, содержащие только производные от относительных координат x,y и z , но не содержащие производные от векторов :

Ко второй группе отнесем слагаемые, которые содержат только производные от векторов , но не содержащие производных от относительных координат x,y,z :

Осталась еще одна группа слагаемых, которые не могли быть отнесены ни к первой, ни ко второй, так как они содержат производные от всех переменных x, y,z , . Обозначим эту группу слагаемых через :

Каждая из выделенных групп представляет собой, по крайней мере по размерности, некоторое ускорение. Выясним физический смысл всех трех ускорений: .

Ускорение , как это видно из равенства, вычисляется так, как если бы относительные координаты x,y,z изменялись с течением времени, а векторы оставались неизменными, т.е. подвижная система отсчета Oxyz как бы покоилась, а точка М двигалась. Поэтому ускорение представляет собой относительное ускорение точки М . Так как ускорение (и скорость) относительного движения вычисляется в предположении, что подвижная система отсчета находится а покое, то для определения относительного ускорения (и скорости) можно пользоваться всеми правилами, изложенными ранее в кинематике точки.

Ускорение , как это видно из равенства, вычисляется в предположении, что сама точка М покоится по отношению к подвижной системе отсчета Oxyz (x =const, y =const, z =const) и перемещается вместе с этой системой отсчета по отношению к неподвижной системе отсчета . Поэтому ускорение представляет собой переносное ускорение точки М .

Третья группа слагаемых определяет ускорение , которое не может быть отнесено не к относительному ускорению , так как содержит в своем выражении производные не к переносному ускорению , так как содержит в своем выражении производные

Преобразуем правую часть равенства, припомнив, что

Подставляя эти значения производных в равенства, получим

Здесь вектор есть относительная скорость точки М , поэтому

Ускорение называют ускорением Кориолиса . Ввиду того, что ускорение Кориолиса появляется в случае вращения подвижной системы отсчета, его называют еще поворотным ускорением.

С физической точки зрения появление поворотного ускорения точки объясняется взаимным влиянием переносного и относительного движений.

Итак, ускорение Кориолиса точки равно по модулю и направлению удвоенному векторному произведению угловой скорости переносного движения на относительную скорость точки.

Равенство, которое теперь можно сокращенно записать в виде

представляет теорему сложения ускорений в случае, когда переносное движение является произвольным: абсолютное ускорение точки равно векторной сумме переносного, относительного и поворотного ускоре­ний. Эту теорему часто называют теоремой Кориолиса.

Из формулы следует, что модуль поворотного ускорения будет

где - угол между вектором и вектором . Чтобы определить направление поворотного ускорения , нужно мысленно перенести вектор в точку М и руководствоваться правилом векторной алгебры. Согласно этому правилу, вектор нужно направлять перпендикуляр­но к плоскости, определяемой векторами и , и так, чтобы, смотря с конца вектора , наблюдатель мог видеть кратчайший поворот от к происходящим против движения часовой стрелки (рис. 30). в данный момент времени обращается в нуль.

Кроме того, поворотное ускорение точки может, очевидно, обращать­ся в нуль, если:

а) вектор относительной скорости точки параллелен вектору уг­ловой скорости переносного вращения, т.е. относительное движение точки происходит по направлению, параллельному оси переносного вращения;

б) точка не имеет движения относительно подвижной системы от­счета или относительная скорость точки в данный момент времени равна нулю ().

Пример 14. Пусть тело вращается вокруг неподвижной оси z . По поверхности его движется точка М (рис. 52). Конечно, скорость этого движения точки – относительная скорость , а скорость вращения тела – угловая скорость переносного движения .

Ускорение Кориолиса , направлено перпен­дикулярно этим двум векторам, по правилу направления вектора век­торного произведения. Так, как пока­зано на рис. 52.

Рис.52

Нетрудно сформулировать более удобное правило определения направ­ления вектора : нужно спроектировать вектор относитель­ной ско­рости на плоскость перпендикуляр­ную оси переносного вращения и за­тем повер­нуть эту проекцию на 90 градусов в плоскости по направлению переносного вращения. Конечное положение проекции вектора укажет направление кориолисова ускорения. (Это правило было предложено Н.Е. Жуковским).

Пример 15. (Вернемся к примеру 13). Найдем абсолютное ускорение колечка М