Является ли постоянной величиной момент инерции тела. Момент инерции

Чтобы изменить скорость перемещения тела в пространстве, необходимо приложить некоторое усилие. Этот факт относится ко всем видам механического движения и связан с наличием инерционных свойств у объектов, имеющих массу. В данной статье рассматривается вращение тел и дается понятие об их моменте инерции.

Что такое вращение с точки зрения физики?

Ответ на этот вопрос может дать каждый человек, поскольку этот физический процесс ничем не отличается от его понятия в обиходе. Процесс вращения представляет собой перемещение объекта, обладающего конечной массой, по круговой траектории вокруг некоторой воображаемой оси. Можно привести следующие примеры вращения:

  • Движение колеса автомобиля или велосипеда.
  • Вращение лопастей вертолета или вентилятора.
  • Движение нашей планеты вокруг оси и вокруг Солнца.

Какие физические величины характеризуют процесс вращения?

Перемещение по окружности описывается набором величин в физике, основные из которых перечислены ниже:

  • r - расстояние до оси материальной точки массой m.
  • ω и α - угловая скорость и ускорение, соответственно. Первая величина показывает, на сколько радиан (градусов) поворачивается тело вокруг оси за одну секунду, вторая величина описывает скорость изменения во времени первой.
  • L - момент импульса, который подобен аналогичной характеристике при линейном движении.
  • I - момент инерции тела. Эта величина рассматривается ниже в статье подробно.
  • M - момент силы. Он характеризует степень изменения величины L, если приложена внешняя сила.

Перечисленные величины связаны друг с другом следующими формулами вращательного движения:

Первая формула описывает круговое движение тела в отсутствие действия внешних моментов сил. В приведенном виде она отражает закон сохранения момента импульса L. Второе выражение описывает случай ускорения или замедления вращения тела в результате действия момента силы M. Оба выражения часто используются при решении задач динамики по круговой траектории.

Как видно из этих формул, момент инерции относительно оси (I) в них используется в качестве некоторого коэффициента. Рассмотрим подробнее эту величину.

Откуда появляется величина I?

В этом пункте рассмотрим самый простой пример вращения: круговое перемещение материальной точки массой m, дистанция которой от оси вращения составляет r. Эта ситуация приведена на рисунке.

Согласно определению, момент импульса L записывается, как произведение плеча r на линейный импульс p точки:

L = r*p = r*m*v, поскольку p = m*v

Учитывая, что линейная и угловая скорость связаны друг с другом через расстояние r, это равенство можно переписать так:

v = ω*r => L = m*r 2 *ω

Произведение массы материальной точки на квадрат расстояния до оси вращения принято называть моментом инерции. Формула выше перепишется в таком случае следующим образом:

То есть мы получили выражение, которое было приведено в предыдущем пункте, и ввели в использование величину I.

Общая формула для величины I тела

Выражение для момента инерции массой m материальной точки является базовым, то есть оно позволяет рассчитать эту величину для любого тела, имеющего произвольную форму и неоднородное распределение массы в нем. Для этого необходимо разбить рассматриваемый объект на маленькие элементы массой m i (целое число i - номер элемента), затем, умножить каждый из них на квадрат расстояния r i 2 до оси, вокруг которой рассматривают вращение, и сложить полученные результаты. Описанную методику нахождения величины I можно записать математически так:

I = ∑ i (m i *r i 2)

Если тело разбито таким образом, что i->∞, тогда приведенная сумма заменяется интегралом по массе тела m:

Этот интеграл эквивалентен другому интегралу по объему тела V, поскольку dV=ρ*dm:

I = ρ*∫ V (r i 2 *dV)

Все три формулы используются для вычисления момента инерции тела. При этом в случае дискретного распределения масс в системе предпочтительнее пользоваться 1-м выражением. При непрерывном распределении массы применяют 3-е выражение.

Свойства величины I и ее физический смысл

Описанная процедура получения общего выражения для I позволяет сделать некоторые выводы о свойствах этой физической величины:

  • она является аддитивной, то есть полный момент инерции системы можно представить, как сумму моментов отдельных ее частей;
  • она зависит от распределения массы внутри системы, а также от расстояния до оси вращения, чем больше последнее, тем больше I;
  • она не зависит от действующих на систему моментов сил M и от скорости вращения ω.

Физический смысл I заключается в том, насколько сильно система препятствует любому изменению скорости ее вращения, то есть момент инерции характеризует степень "плавности" возникающих ускорений. Например, колесо велосипеда можно легко раскрутить до больших угловых скоростей и также легко его остановить, но чтобы изменить вращение маховика на коленвале автомобиля, понадобится приложить значительное усилие и некоторое время. В первом случае имеет место система с маленьким моментом инерции, во втором - с большим.

Значение I некоторых тел для оси вращения, проходящей через центр масс

Если применить интегрирование по объему для любых тел с произвольным распределением массы, то можно получить для них величину I. В случае однородных объектов, которые имеют идеальную геометрическую форму, эта задача уже решена. Ниже приводятся формулы момента инерции для стержня, диска и шара массой m, в которых составляющее их вещество распределено равномерно:

  • Стержень. Ось вращения проходит перпендикулярно ему. I = m*L 2 /12, где L - длина стержня.
  • Диск произвольной толщины. Момент инерции с осью вращения, проходящей перпендикулярно его плоскости через центр масс, вычисляется так: I = m*R 2 /2, где R - радиус диска.
  • Шар. В виду высокой симметрии этой фигуры, для любого положения оси, проходящей через ее центр, I = 2/5*m*R 2 , здесь R - шара радиус.

Задача на расчет значения I для системы с дискретным распределением массы

Представим себе стержень длиною 0,5 метра, который сделан из твердого и легкого материала. Этот стержень закреплен на оси таким образом, что она проходит перпендикулярно ему точно посередине. На этот стержень подвешены 3-и груза следующим образом: с одной стороны оси имеются два груза массами 2 кг и 3 кг, находящиеся на расстояниях 10 см и 20 см от его конца, соответственно; с другой стороны подвешен один груз массой 1,5 кг к концу стержня. Для этой системы необходимо рассчитать момент инерции I и определить, с какой скоростью ω стержень будет вращаться, если к одному из его концов приложить силу 50 Н в течение 10 секунд.

Поскольку массой стержня можно пренебречь, тогда необходимо рассчитать момент I для каждого груза и сложить полученные результаты, чтобы получить полный момент системы. Согласно условию задачи от оси груз массой 2 кг находится на расстоянии 0,15 м (0,25-0,1), груз 3 кг - 0,05 м (0,25-0,20), груз 1,5 кг - 0,25 м. Воспользовавшись формулой для момента I материальной точки, получаем:

I = I 1 +I 2 +I 3 = m 1 *r 1 2 + m 2 *r 2 2 + m 3 *r 3 2 = 2*(0,15) 2 +3*(0,05) 2 +1,5*(0,25) 2 = 0,14 625 кг*м 2 .

Обратим внимание, что при выполнении вычислений все единицы измерения были переведены в систему СИ.

Чтобы определить угловую скорость вращения стержня после действия силы, следует применить формулу с моментом силы, которая была приведена во втором пункте статьи:

Поскольку α = Δω/Δt и M = r*F, где r - длина плеча, получаем:

r*F = I*Δω/Δt => Δω = r*F*Δt/I

Учитывая, что r = 0,25 м, подставляем числа в формулу, получаем:

Δω = r*F*Δt/I = 0,25*50*10/0,14625 = 854,7 рад/с

Полученная величина является достаточно большой. Чтобы получить привычную частоту вращения, следует поделить Δω на 2*pi радиан:

f = Δω/(2*pi) = 854,7/(2*3,1416) = 136 с -1

Таким образом, приложенная сила F к концу стержня с грузами за 10 секунд раскрутит его до частоты 136 оборотов в секунду.

Расчет значения I для стержня, когда ось проходит через его конец

Пусть имеется однородный стержень массой m и длиной L. Необходимо определить момент инерции, если ось вращения расположена на конце стержня перпендикулярно ему.

Воспользуемся общим выражением для I:

I = ρ*∫ V (r i 2 *dV)

Разбивая рассматриваемый объект на элементарные объемы, заметим, что dV может быть записано, как dr*S, где S - площадь сечения стержня, а dr - толщина элемента разбиения. Подставляя это выражение в формулу, имеем:

I = ρ*S*∫ L (r 2 *dr)

Этот интеграл вычислить достаточно просто, получаем:

I = ρ*S* (r 3 /3)∣ 0 L => I = ρ*S*L 3 /3

Поскольку объем стержня равен S*L, а масса - ρ*S*L, то получаем конечную формулу:

Любопытно отметить, что момент инерции для того же стержня, когда ось проходит через его центр масс, в 4 раза меньше полученной величины (m*L 2 /3/(m*L 2 /12)=4).

ОПРЕДЕЛЕНИЕ МОМЕНТА ИНЕРЦИИ СИСТЕМЫ ТЕЛ

С ПОМОЩЬЮ МАЯТНИКА ОБЕРБЕКА.

Цель работы – определить момент инерции системы четырех одинаковых грузов массы m двумя способами: 1) экспериментально с помощью маятника Обербека, 2) теоретически, считая грузы материальными точками. Сравнить полученные результаты.

Приборы и принадлежности : маятник Обербека, секундомер, масштабная линейка, набор грузов, штангенциркуль.

Теоретическое введение

Момент инерции – физическая величина, характеризующая инертность тела при вращательном движении.

Моментом инерции материальной точки относительно оси вращения называется произведение массы этой точки на квадрат ее расстояния до оси (см. рис. 1)

Моментом инерции произвольного тела относительно оси называется сумма моментов инерции материальных точек из которых состоит тело, относительно этой оси (см. рис. 2)

Для однородных тел правильной геометрической формы можно заменить суммирование интегрированием.

,

где dm = ρdV (ρ – плотность вещества, dV – элемент объема)

Таким образом получены формулы некоторых тел массой m относительно оси, проходящей через центр тяжести:

а) стержня длиной относительно оси, перпендикулярной стержню

,

б) обруча (а также тонкостенного цилиндра) относительно оси, перпендикулярной плоскости обруча и проходящей через его центр тяжести (совпадающей с осью цилиндра)

,

где – радиус обруча (цилиндра)

в) диска (сплошного цилиндра) относительно оси, перпендикулярной плоскости диска и проходящей через его центр тяжести (совпадающей с осью цилиндра)


,

где – радиус диска (цилиндра)

г) шара радиуса R относительно оси произвольного направления, проходящей через его центр тяжести

.

Момент инерции тела зависит: 1) от формы и размеров тела, 2) от массы и распределения масс, 3) от положения оси относительно тела.

Теорема Штейнера о параллельных осях записывается как:

,

где – момент инерции тела массой m относительно произвольной оси, – момент инерции этого тела относительно оси, проходящей через центр тяжести тела параллельно произвольной оси, – расстояние между осями.

Описание установки.

Маятник Обербека представляет собой крестовину, состоящую из шкива и четырех равноплечих стержней, закрепленных на горизонтальной оси (см. рис.2). На стержнях на равных расстояниях от оси вращения насажены четыре одинаковых груза массы m каждый. При помощи груза m 1 , прикрепленного к концу шнура, намотанного на один из шкивов, вся система может быть приведена во вращательное движение. Для отсчета высоты падения h груза m 1 имеется вертикальная шкала.

Запишем второй закон Ньютона для падающего груза в векторной форме

(1)

где
- сила тяжести;
- сила натяжения шнура (см. рис. 1);

- линейное ускорение, с которым падает груз m 1 вниз.

Принимая направление движения груза за положительное, перепишем уравнение (I) в скалярной форме

(2)

откуда получим выражение для силы натяжения шнура

Линейное ускорение a находится из формулы пути равноускоренного движения без начальной скорости

(4)

где h – высота падения груза m 1 ; t – время падения.

Сила натяжения нити F нат вызывает ускоренное вращение крестовины. Основной закон вращательного движения крестовины с учетом сил трения запишется так:

M M тр = I i , (5)

где М – момент силы натяжения; M тр - момент сил трения; I - момент инерции крестовины; i - угловое ускорение, с которым вращается крестовина. Величина момента сил трения M тр по сравнению с величиной вращающего момента М невелика, и, следовательно, ею можно пренебречь.

Из уравнения (5) с учетом сделанного замечания получаем оконча-тельную формулу для расчета момента инерции крестовины

(6)

где r - радиус шкива. Угловое ускорение i определяется по формуле

(7)

Подставляя (3) и (7) в (6), получаем окончательную формулу для расчета момента инерции крестовины

(8)

Порядок выполнения работы .

Экспериментальное определение момента инерции системы 4 х грузов.

1. Снять со стержней грузы m .

2. Намотать в один слой шнур на шкив, установив груз m 1 на заранее выбран-ной высоте h . Отпустив крестовину, замерить время падения t о груза с помо-щью секундомера. Опыт повторить пять раз (при одной и той же высоте паде-ния h ).

3. Закрепить на концах стержней грузы m .

4. Выполнить операции, указанные в пункте 2, измеряя секундомером время падения t . Опыт повторить пять раз.

5. С помощью штангенциркуля измерить диаметр шкива d в пяти разных положениях.

6. Результаты измерений занести в таблицу. Найти приближенные значения и по методу Стьюдента оценить абсолютные погрешности измерения величин t о, t и d .

а) крестовина без грузов (a о ),

б) крестовина с грузами ).

8. По формуле (8) вычислить момент инерции крестовины без грузов (I o ) и с грузами (I), используя приближенные значения m 1, R , g и полученные значения а и а о.

    Вычислить погрешности измерений по формулам:

(9)

(10)

Таблица 1

Результаты измерений и вычислений

Часть II .

1. Теоретически найти момент инерции системы 4 х грузов массы m, находящихся на расстоянии R от оси вращения (считая грузы материальными точками)

(11)

2. Сравнить результаты эксперимента и расчетов. Вычисть относительную погрешность

(12)

и сделать вывод о том, как велико расхождение полученных результатов.

Контрольные вопросы.

1. Что называется моментом инерции материальной точки и произвольного тела?

2. От чего зависит момент инерции тела относительно оси вращения?

3. Приведите примеры формул момента инерции тел. Как они получены?

4. Теорема Штейнера о параллельных осях и ее практическое использование.

5. Вывод формулы для расчета момента инерции крестовины с грузами и без грузов.

Литература

1. Савельев И. В. Курс общей физики: Учебн. пособие для втузов: в 3 т. Т.1: Механика. Молекулярная физика. - 3-е изд., испр. - М.: Наука, 1986. – 432с.

2. Детлаф А. А. , Яворский Б. М. Курс физики: Учебн. пособие для втузов. - М.: Высшая школа, 1989. - 607 с. - предм. указ.: с. 588-603.

3. Зисман Г. А., Тодес О. М.. Курс общей физики для втузов: в 3 т. Т. 1: Механика, молекулярная физика, колебания и волны - 4-е изд., стереотип. - М.: Наука, 1974. - 340 с.

4. Методические указания к выполнению лабораторных работ по разделу “Механика“.- Иваново, ИХТИ, 1989 г. (под редакцией Биргера Б.Н.).

Моментом инерции тела (системы) относительно данной оси Oz (или осевым моментом инерции) называется скалярная величина, разная сумме произведений масс всех точек тела (системы) на квадраты их расстояний от этой оси:

Из определения следует, что момент инерции тела (или системы) относительно любой оси является величиной положительной и не равной нулю.

В дальнейшем будет показано, что осевой момент инерции играет при вращательном движении тела такую же роль, какую масса при поступательном, т. е. что осевой момент инерции является мерой инертности тела при вращательном движении.

Согласно формуле (2) момент инерции тела равен сумме моментов инерции всех его частей относительно той же оси. Для одной материальной точки, находящейся на расстоянии h от оси, . Единицей измерения момента инерции в СИ будет 1 кг (в системе МКГСС - ).

Для вычисления осевых моментов инерции можно расстояния точек от осей выражать через координаты этих точек (например, квадрат расстояния от оси Ох будет и т. д.).

Тогда моменты инерции относительно осей будут определяться формулами:

Часто в ходе расчетов пользуются понятием радиуса инерции. Радиусом инерции тела относительно оси называется линейная величина определяемая равенством

где М - масса тела. Из определения следует, что радиус инерцни геометрически равен расстоянию от оси той точки, в которой надо сосредоточить массу всего тела, чтобы момент инерции одной этой точки был равен моменту инерции всего тела.

Зная радиус инерции, можно по формуле (4) найти момент инерции тела и наоборот.

Формулы (2) и (3) справедливы как для твердого тела, так и для любой системы материальных точек. В случае сплошного тела, разбивая его на элементарные части, найдем, что в пределе сумма, стоящая в равенстве (2), обратится в интеграл. В результате, учитывая, что где - плотность, а V - объем, получим

Интеграл здесь распространяется на весь объем V тела, а плотность и расстояние h зависят от координат точек тела. Аналогично формулы (3) для сплошных тел примут вид

Формулами (5) и (5) удобно пользоваться при вычислении моментов инерции однородных тел правильной формы. При этом плотность будет постоянной и выйдет из-под знака интеграла.

Найдем моменты инерции некоторых однородных тел.

1. Тонкий однородный стержень длиной l и массой М. Вычислим его момент инерции относительно оси перпендикулярной стержню и проходящей через его конец А (рис. 275). Направим вдоль АВ координатную ось Тогда для любого элементарного отрезка длины d величина , а масса , где - масса единицы длины стержня. В результате формула (5) дает

Заменяя здесь его значением, найдем окончательно

2. Тонкое круглое однородное кольцо радиусом R и массой М. Найдем его момент инерции относительно оси перпендикулярной плоскости кольца и проходящей через его центр С (рис. 276).

Так как все точки кольца находятся от оси на расстоянии то формула (2) дает

Следовательно, для кольца

Очевидно, такой же результат получится для момента инерции тонкой цилиндрической оболочки массой М и радиусом R относительно ее оси.

3. Круглая однородная пластина или цилиндр радиусом R и массой М. Вычислим момент инерции круглой пластины относительно оси перпендикулярной пластине и проходящей через ее центр (см. рис. 276). Для этого выделим элементарное кольцо радиусом и шириной (рис. 277, а). Площадь этого кольца , а масса где - масса единицы площади пластины. Тогда по формуле (7) для выделенного элементарного кольца будет а для всей пластину

В статье узнаете что такое момент инерции, как влияет ось вращения, а также момент вращения для материальной точки, множества частиц и для твердых тел.

Момент инерции , обозначенный буквой I , является физической величиной, характерной для вращательного движения тела. Это значение предполагает постоянное значение для данного тела и конкретной оси его вращения. Величина момента инерции зависит от веса тела, положения оси вращения, вокруг которой вращается тело и распределения его массы. Поэтому можно написать, что момент инерции тела информирует нас о том, как масса вращающегося тела распределяется вокруг фиксированной оси его вращения. Чем выше значение момента инерции, тем сложнее установить или изменить вращательное движение данного тела (например, уменьшить или увеличить его угловую скорость).

Момент инерции тела относительно оси вращения

На следующем рисунке показано, как выбор оси вращения тела влияет на значение момента его инерции и, следовательно, на легкость/сложность его вращения. На рисунках а) и б) показан однородный цилиндр с радиусом r и высотой h, который вращается вокруг продольной оси (рисунок а) и вокруг оси, перпендикулярной цилиндру, проходящему через его центр (рисунок б).

Ролик с радиусом r и высотой h вращается вокруг продольной оси (рисунок а) и оси, перпендикулярной цилиндру, проходящему через его центр (рисунок б)). Вес ролика в случае а) гораздо более сфокусирован вблизи его оси вращения, чем в случае б), поэтому цилиндр с рисунка а) вращать легче, чем ролик с рисунка б).

В обоих случаях мы имеем дело с одним и тем же телом, но в первом случае (рис. А) легче вращать ролик. Причиной такой ситуации является различное распределение веса цилиндра вокруг его оси вращения: при вращении цилиндра вокруг продольной оси масса ролика более сфокусирована вблизи оси вращения, чем во второй. В результате получается меньшее значение момента инерции цилиндра из рисунка а), а не цилиндра из рисунка б).

Момент инерции материальной точки

Чтобы вычислить момент инерции и вращение отдельной частицы вокруг заданной оси вращения, используем следующее выражение:

где m — масса частицы, r — расстояние частицы от оси вращения.

Момента инерции измеряется в кг ⋅ м 2 в системе СИ.

Момент инерции сложного тела с частицами

Момент инерции тела, состоящего из n частиц, равен сумме моментов инерции каждой частицы относительно данной оси вращения.

Например, для тела, состоящего из четырех частиц, имеем:

где m 1 , m 2 , m 3 и m 4 — массы частиц, которые составляют тела, r 1 , r 2 , r 3 и r 4, расстояние от оси вращения соответственно частиц с массами m 1 , m 2 , m 3 и m 4 .

Момент инерции твердого тела

Когда тело состоит из очень многих частиц, расположенных близко друг к другу, сумма моментов инерции в приведенном выше уравнении заменяется интегралом. Если расширенное тело разделено на бесконечно малые элементы с массой dm, удаленной от оси вращения на величину r, момент инерции I будет равен:

На следующем рисунке показаны выбранные расширенные тела с их моментами инерции, рассчитанными для осей вращения, указанных на чертежах.

Момент инерции обода

Момент инерции обода будет равен I=mr 2

ОПРЕДЕЛЕНИЕ

Момент инерции относительно оси, вокруг которой происходит вращение - это мера инертности тела, совершающего вращательные движения.

Момент инерции является скалярной (в общем случае тензорной) физической величиной, которую находят как сумму произведений масс материальных точек () (на которые следует провести разбиение рассматриваемого тела) на квадраты расстояний () от них до оси вращения:

Если тело считают непрерывным, то суммирование в выражении (1) заменяется интегрированием, массы элементов тела обозначают как :

где r - функция положения материальной точки в пространстве; - плотность тела; -объем элемента тела. Если тело является однородным:

Момент инерции материальной точки

Роль массы при движении по окружности материальной точки выполняет момент инерции (J), который равен:

где r- расстояние от материальной точки до оси вращения. Для материальной точки, которая движется по окружности, момент инерции является постоянной величиной.

Момент инерции является аддитивной величиной. Это означает то, что если в системе не одна, а несколько материальных точек, то момент инерции системы (J) равен сумме моментов инерции () отдельных точек:

Примеры моментов инерции некоторых тел

Момент инерции тонкого стержня вращающегося около оси, проходящей через его один конец и перпендикулярно стержню, равен:

Момент инерции прямого круглого конуса, массы высоты h и радиуса r вращающегося около своей оси:

Момент инерции однородного твердого параллелепипеда, c геометрическими параметрами и массой m вращающегося относительно своей самой длинной диагонали, вычисляют по формуле:

Момент инерции тонкой прямоугольной пластины массы m, ширины w и длины d, вращающейся относительно оси, которая проходит через точку пересечения диагоналей этого прямоугольника перпендикулярно плоскости пластины:

где m - масса шара; R - радиус шара. Шар вращается около оси, которая проходит через его центр.

Примеры формул для вычисления моментов инерции других тел можно посмотреть в разделе . В этом же разделе можно ознакомиться с теоремой Штейнера.

Примеры решения задач по теме «Момент инерции»

ПРИМЕР 1

Задание Два малых шарика массой m каждый соединены тонким невесомым стержнем, длина которого равна Каким будет момент инерции системы относительно оси, которая проходит перпендикулярно стержню через центр масс сиcтемы?

Решение Для решения задачи используем формулу для момента инерции одной материальной точки:

где расстояние от точки до оси вращения равно . Следовательно, формула (1.1) преобразуется к виду:

Так как массы первой и второй материальных точек равны, равны расстояния от каждой из них до оси вращения, то:

Момент инерции является аддитивной величиной, значит, момент инерции двух точек найдем как сумму и :

Ответ

ПРИМЕР 2

Задание Каков момент инерции системы, которая изображена на рис.2 и состоит из двух тонких стержней с массами m. Угол между стержнями прямой. Длины стержней равны l. Ось вращения параллельна одному из стержней (рис.2).

Решение Момент инерции системы можно найти как сумму моментов инерции каждого стержня относительно оси вращения:

Момент инерции () для горизонтального стержня равен: