Что такое космические лучи. Космические лучи самых высоких энергий

Борис Аркадьевич Хренов,
доктор физико-математических наук , Научно-исследовательский институт ядерной физики им. Д. В. Скобельцына МГУ им. М. В. Ломоносова

«Наука и жизнь» №10, 2008

Прошло без малого сто лет с того момента, как были открыты космические лучи - потоки заряженных частиц, приходящих из глубин Вселенной. С тех пор сделано много открытий, связанных с космическими излучениями, но и загадок остаётся ещё немало. Одна из них, возможно, наиболее интригующая: откуда берутся частицы с энергией более 10 20 эВ, то есть почти миллиард триллионов электронвольт, в миллион раз большей, чем будет получена в мощнейшем ускорителе - Большом адронном коллайдере? Какие силы и поля разгоняют частицы до таких чудовищных энергий?

Космические лучи открыл в 1912 году австрийский физик Виктор Гесс. Он был сотрудником Радиевого института Вены и проводил исследования ионизированных газов. К тому времени уже знали, что все газы (и атмосфера в том числе) всегда слегка ионизованы, что свидетельствовало о присутствии радиоактивного вещества (подобного радию) либо в составе газа, либо вблизи прибора, измеряющего ионизацию, вероятнее всего - в земной коре. Опыты с подъёмом детектора ионизации на воздушном шаре были задуманы для проверки этого предположения, так как с удалением от поверхности земли ионизация газа должна уменьшаться. Ответ получился противоположный: Гесс обнаружил некое излучение, интенсивность которого росла с высотой. Это наводило на мысль, что оно приходит из космоса, но окончательно доказать внеземное происхождение лучей удалось только после многочисленных опытов (Нобелевскую премию В. Гессу присудили лишь в 1936 году). Напомним, что термин «излучение» не означает, что эти лучи имеют чисто электромагнитную природу (как солнечный свет, радиоволны или рентгеновское излучение); его использовали при открытии явления, природа которого ещё не была известна. И хотя вскоре выяснилось, что основная компонента космических лучей - ускоренные заряженные частицы, протоны, термин сохранился. Изучение нового явления быстро стало давать результаты, которые принято относить к «передовому краю науки».

Открытие космических частиц очень высокой энергии сразу же (ещё задолго до того, как был создан ускоритель протонов) вызвало вопрос: каков механизм ускорения заряженных частиц в астрофизических объектах? Сегодня мы знаем, что ответ оказался нетривиальным: природный, «космический» ускоритель кардинально отличается от ускорителей рукотворных.

Вскоре выяснилось, что космические протоны, пролетая сквозь вещество, взаимодействуют с ядрами его атомов, рождая неизвестные до этого нестабильные элементарные частицы (их наблюдали в первую очередь в атмосфере Земли). Исследование механизма их рождения открыло плодотворный путь для построения систематики элементарных частиц. В лаборатории протоны и электроны научились ускорять и получать огромные их потоки, несравнимо более плотные, чем в космических лучах. В конечном счете, именно опыты по взаимодействию частиц, получивших энергию в ускорителях, привели к созданию современной картины микромира.

В 1938 году французский физик Пьер Оже открыл замечательное явление - ливни вторичных космических частиц, которые возникают в результате взаимодействия первичных протонов и ядер экстремально высоких энергий с ядрами атомов атмосферы. Оказалось, что в спектре космических лучей есть частицы с энергией порядка 10 15 –10 18 эВ - в миллионы раз больше энергии частиц, ускоряемых в лаборатории. Академик Дмитрий Владимирович Скобельцын придал особое значение изучению таких частиц и сразу после войны, в 1947 году, вместе с ближайшими коллегами Г. Т. Зацепиным и Н. А. Добротиным организовал комплексные исследования каскадов вторичных частиц в атмосфере, названных широкими атмосферными ливнями (ШАЛ). Историю первых исследований космических лучей можно найти в книгах Н. Добротина и В. Росси. Со временем школа Д.В. Скобельцына выросла в одну из самых сильных в мире и долгие годы определяла основные направления в изучении космических лучей сверхвысоких энергий. Её методы позволили расширить диапазон исследуемых энергий от 10 9 –10 13 эВ, регистрируемых на воздушных шарах и спутниках, до 10 13 –10 20 эВ. Особенно привлекательными эти исследования делали два аспекта.

Во-первых, появилась возможность использовать созданные самой природой протоны высокой энергии для изучения их взаимодействия с ядрами атомов атмосферы и расшифровки самой тонкой структуры элементарных частиц.

Во-вторых, возникла вероятность отыскать в космосе объекты, способные ускорить частицы до экстремально высоких энергий.

Первый аспект оказался не столь плодотворным, как хотелось: изучение тонкой структуры элементарных частиц потребовало гораздо больше данных о взаимодействии протонов, чем позволяют получить космические лучи. Вместе с тем важный вклад в представления о микромире дало изучение зависимости самых общих характеристик взаимодействия протонов от их энергии. Именно при изучении ШАЛ обнаружили особенность в зависимости количества вторичных частиц и их распределения по энергиям от энергии первичной частицы, связанную с кварк-глюонной структурой элементарных частиц. Эти данные позже подтвердились в опытах на ускорителях.

Сегодня построены достоверные модели взаимодействия космических лучей с ядрами атомов атмосферы, позволившие изучить энергетический спектр и состав их первичных частиц самых высоких энергий. Стало ясно, что космические лучи в динамике развития Галактики играют не меньшую роль, чем её поля и потоки межзвёздного газа: удельная энергия космических лучей, газа и магнитного поля примерно равны 1 эВ в см 3 . При таком балансе энергии в межзвёздной среде естественно предположить, что ускорение частиц космических лучей происходит, скорее всего, в тех же объектах, которые отвечают за нагревание и выброс газа, например в Новых и Сверхновых звёздах при их взрыве.

Первый механизм ускорения космических лучей предложил Энрико Ферми для протонов, хаотически сталкивающихся с намагниченными облаками межзвёздной плазмы, но не смог объяснить всех экспериментальных данных. В 1977 году академик Гермоген Филиппович Крымский показал, что этот механизм должен гораздо сильней ускорять частицы в остатках Сверхновых на фронтах ударных волн, скорости которых на порядки выше скоростей облаков. Сегодня достоверно показано, что механизм ускорения космических протонов и ядер ударной волной в оболочках Сверхновых наиболее эффективен. Но воспроизвести его в лабораторных условиях вряд ли удастся: ускорение происходит сравнительно медленно и требует огромных затрат энергии для удержания ускоренных частиц. В оболочках Сверхновых эти условия существуют благодаря самой природе взрыва. Замечательно, что ускорение космических лучей происходит в уникальном астрофизическом объекте, который отвечает за синтез тяжёлых ядер (тяжелее гелия), действительно присутствующих в космических лучах.

В нашей Галактике известны несколько Сверхновых возрастом меньше тысячи лет, которые наблюдались невооружённым глазом. Наиболее известны Крабовидная туманность в созвездии Тельца («Краб» - остаток вспышки Сверхновой в 1054 году, отмеченной в восточных летописях), Кассиопея-А (её наблюдал в 1572 году астроном Тихо Браге) и Сверхновая Кеплера в созвездии Змееносца (1680). Диаметры их оболочек сегодня составляют 5–10 световых лет (1 св. год = 10 16 м), то есть они расширяются со скоростью порядка 0,01 скорости света и находятся на расстояниях примерно десять тысяч световых лет от Земли. Оболочки Сверхновых («туманностей») в оптическом, в радио-, рентгеновском и гамма-диапазонах наблюдали космические обсерватории Чандра, Хаббл и Спитцер. Они достоверно показали, что в оболочках действительно происходит ускорение электронов и протонов, сопровождаемое рентгеновским излучением.

Наполнить межзвёздное пространство космическими лучами с измеренной удельной энергией (~1 эВ в см 3) могли бы около 60 остатков Сверхновых моложе 2000 лет, в то время как их известно менее десяти. Эта нехватка объясняется тем, что в плоскости Галактики, там, где сосредоточены звёзды и Сверхновые в том числе, очень много пыли, которая не пропускает свет к наблюдателю на Земле. Наблюдения в рентгеновском и гамма-излучениях, для которых пылевой слой прозрачен, позволили расширить список наблюдаемых «молодых» Сверхновых оболочек. Последней из таких вновь открытых оболочек стала Сверхновая G1.9+0.3, наблюдаемая с помощью рентгеновского телескопа «Чандра» начиная с января 2008 года. Оценки размера и скорости расширения её оболочки показывают, что она вспыхнула примерно 140 лет назад, но не была видна в оптическом диапазоне из-за полного поглощения её света пылевым слоем Галактики.

К данным о Сверхновых, взрывающихся в нашей Галактике Млечный Путь, добавляются значительно более богатые статистические данные о Сверхновых в других галактиках. Прямым подтверждением присутствия ускоренных протонов и ядер служит гамма-излучение с высокой энергией фотонов, возникающих в результате распада нейтральных пионов - продуктов взаимодействия протонов (и ядер) с веществом источника. Такие фотоны самых высоких энергий наблюдают с помощью телескопов, регистрирующих свечение Вавилова-Черенкова, излучаемое вторичными частицами ШАЛ. Самый совершенный инструмент такого типа - установка из шести телескопов, созданная при сотрудничестве HESS в Намибии. Гамма-излучение Краба было измерено первым, и его интенсивность стала мерой интенсивности для других источников.

Полученный результат не только подтверждает наличие механизма ускорения протонов и ядер в Сверхновой, но и позволяет также оценить спектр ускоренных частиц: спектры «вторичных» гамма-квантов и «первичных» протонов и ядер весьма близки. Магнитное поле в Крабе и его размер допускают ускорение протонов до энергий порядка 10 15 эВ. Спектры частиц космических лучей в источнике и в межзвёздной среде несколько отличаются, так как вероятность выхода частиц из источника и время жизни частиц в Галактике зависят от энергии и заряда частицы. Сравнение энергетического спектра и состава космических лучей, измеренных у Земли, со спектром и составом в источнике позволило понять, как долго путешествуют частицы среди звёзд. Ядер лития, бериллия и бора в космических лучах у Земли оказалось значительно больше, чем в источнике, - их дополнительное количество появляется в результате взаимодействия более тяжёлых ядер с межзвёздным газом. Измерив эту разность, вычислили количество X того вещества, через которое прошли космические лучи, блуждая в межзвёздной среде. В ядерной физике количество вещества, которое встречает частица на своём пути, измеряют в г/см 2 . Это связано с тем, что для вычисления уменьшения потока частиц в столкновениях с ядрами вещества надо знать число столкновений частицы с ядрами, имеющими разную поперечную к направлению частицы площадь (сечение). Выражая количество вещества в этих единицах, для всех ядер получается единая шкала измерения.

Экспериментально найденное значение X ~ 5 –10 г/см 2 позволяет оценить время жизни t космических лучей в межзвёздной среде: t X c , где c - скорость частиц, примерно равная скорости света, ρ ~10 –24 г/см 3 - средняя плотность межзвёздной среды. Отсюда время жизни космических лучей - порядка 10 8 лет. Это время намного превышает время пролёта частицы, двигающейся со скоростью с по прямой от источника до Земли (3·10 4 лет для самых далёких источников на противоположной от нас стороне Галактики). Это означает, что частицы движутся не по прямой, а испытывают рассеяние. Хаотические магнитные поля галактик с индукцией В ~10 –6 гаусса (10 –10 тесла) движут их по окружности радиусом (гирорадиусом) R = E /3 × 10 4 B, где R в м, E - энергия частицы в эВ, В - индукция магнитного поля в гауссах. При умеренных энергиях частиц E

Приблизительно по прямой приходить от источника будут только частицы с энергией E > 10 19 эВ. Поэтому направление создающих ШАЛ частиц с энергией менее 10 19 эВ не указывает на их источник. В этой области энергий остаётся только наблюдать вторичные излучения, генерируемые в самих источниках протонами и ядрами космических лучей. В доступной для наблюдения области энергий гамма-излучения (E

Представление о космических лучах как «местном» галактическом явлении оказалось верно лишь для частиц умеренных энергий E

В 1958 году Георгий Борисович Христиансен и Герман Викторович Куликов открыли резкое изменение вида энергетического спектра космических лучей при энергии порядка 3·10 15 эВ. При энергиях меньше этого значения экспериментальные данные о спектре частиц обычно представляли в «степенном» виде так, что число частиц N с заданной энергией E считалось обратно пропорциональным энергии частицы в степени γ: N (E ) = a /E γ (γ - дифференциальный показатель спектра). До энергии 3·10 15 эВ показатель γ = 2,7, но при переходе к большим энергиям энергетический спектр испытывает «излом»: для энергий E > 3·10 15 эВ γ становится 3,15. Это изменение спектра естественно связать с приближением энергии ускоренных частиц к максимально возможному значению, вычисленному для механизма ускорения в Сверхновых. В пользу такого объяснения излома спектра говорит и ядерный состав первичных частиц в области энергий 10 15 –10 17 эВ. Наиболее надёжные сведения о нём дают комплексные установки ШАЛ - «МГУ», «Тунка», «Тибет», «Каскад». С их помощью получают не только сведения об энергии первичных ядер, но и параметры, зависящие от их атомных номеров, - «ширину» ливня, соотношения между количеством электронов и мюонов, между количеством самых энергичных электронов и общим их количеством. Все эти данные свидетельствуют, что с ростом энергии первичных частиц от левой границы спектра до его излома к энергии после излома происходит увеличение их средней массы. Такое изменение состава частиц по массам согласуется с моделью ускорения частиц в Сверхновых - оно ограничено максимальной энергией, зависящей от заряда частицы. Для протонов эта максимальная энергия порядка 3·10 15 эВ и увеличивается пропорционально заряду ускоряемой частицы (ядра), так что ядра железа эффективно ускоряются вплоть до ~10 17 эВ. Интенсивность потоков частиц с энергией, превышающей максимальную, быстро падает.

Но регистрация частиц ещё больших энергий (~3·10 18 эВ) показала, что спектр космических лучей не только не обрывается, но возвращается к виду, наблюдаемому до излома!

Измерения энергетического спектра в области «ультравысокой» энергии (E > 10 18 эВ) очень трудны из-за малого количества таких частиц. Для наблюдения этих редких событий необходимо создавать сеть из детекторов потока частиц ШАЛ и порождённых ими в атмосфере излучения Вавилова - Черенкова и ионизационного излучения (флуоресценции атмосферы) на площади в сотни и даже тысячи квадратных километров. Для подобных больших, комплексных установок выбирают места с ограниченной хозяйственной деятельностью, но с возможностью обеспечить надёжную работу огромного числа детекторов. Такие установки были построены сначала на площадях в десятки квадратных километров (Якутск, Хавера Парк, Акено), затем в сотни (AGASA, Fly"s Eyе, HiRes), и, наконец, сейчас создаются установки в тысячи квадратных километров (обсерватория Пьер Оже в Аргентине, Телескопическая установка в штате Юта, США).

Следующим шагом в изучении космических лучей ультравысокой энергии станет развитие метода регистрации ШАЛ по наблюдению флуоресценции атмосферы из космоса. В кооперации с несколькими странами в России создаётся первый космический детектор ШАЛ, проект ТУС. Ещё один такой детектор предполагается установить на Международной космической станции МКС (проекты JEM-EUSO и КЛПВЭ).

Что мы сегодня знаем о космических лучах ультравысокой энергии? На нижнем рисунке представлен энергетический спектр космических лучей с энергией выше 10 18 эВ, который получен на установках последнего поколения (HiRes, обсерватория Пьер Оже) вместе с данными о космических лучах меньших энергий, которые, как было показано выше, принадлежат Галактике Млечный Путь. Видно, что при энергиях 3·10 18 –3·10 19 эВ показатель дифференциального энергетического спектра уменьшился до значения 2,7–2,8, именно такого, который наблюдается для галактических космических лучей, когда энергии частиц гораздо меньше предельно возможных для галактических ускорителей. Не служит ли это указанием на то, что при ультравысоких энергиях основной поток частиц создают ускорители внегалактического происхождения с максимальной энергией значительно больше галактической? Излом в спектре галактических космических лучей показывает, что вклад внегалактических космических лучей резко меняется при переходе от области умеренных энергий 10 14 –10 16 эВ, где он примерно в 30 раз меньше вклада галактических (спектр, обозначенный на рисунке пунктиром), к области ультравысоких энергий, где он становится доминирующим.

В последние десятилетия накоплены многочисленные астрономические данные о внегалактических объектах, способных ускорять заряженные частицы до энергий гораздо больше 10 19 эВ. Очевидным признаком того, что объект размером D может ускорять частицы до энергии E , служит наличие на всём протяжении этого объекта магнитного поля В такого, что гирорадиус частицы меньше D . К таким источникам-кандидатам относятся радиогалактики (испускающие сильные радиоизлучения); ядра активных галактик, содержащие чёрные дыры; сталкивающиеся галактики. Все они содержат струи газа (плазмы), движущиеся с огромными скоростями, приближающимися к скорости света. Такие струи играют роль ударных волн, необходимых для работы ускорителя. Чтобы оценить их вклад в наблюдаемую интенсивность космических лучей, нужно учесть распределение источников по расстояниям от Земли и потери энергии частиц в межгалактическом пространстве. До открытия фонового космического радиоизлучения межгалактическое пространство казалось «пустым» и прозрачным не только для электромагнитного излучения, но и для частиц ультравысокой энергии. Плотность газа в межгалактическом пространстве, по астрономическим данным, настолько мала (10 –29 г/см 3), что даже на огромных расстояниях в сотни миллиардов световых лет (10 24 м) частицы не встречают ядер атомов газа. Однако, когда оказалось, что Вселенная наполнена мало энергичными фотонами (примерно 500 фотонов/см 3 с энергией E ф ~10 –3 эВ), оставшимися после Большого взрыва, стало ясно, что протоны и ядра с энергией больше E ~5·10 19 эВ, предела Грейзена-Зацепина-Кузьмина (ГЗК), должны взаимодействовать с фотонами и на пути более десятков миллионов световых лет терять бо льшую часть своей энергии. Таким образом, подавляющая часть Вселенной, находящаяся на расстояниях более 10 7 световых лет от нас, оказалась недоступной для наблюдения в лучах с энергией более 5·10 19 эВ. Последние экспериментальные данные о спектре космических лучей ультравысокой энергии (установка HiRes, обсерватория Пьер Оже) подтверждают существование этого энергетического предела для частиц, наблюдаемых с Земли.

Как видно, изучать происхождение космических лучей ультравысокой энергии чрезвычайно трудно: основная часть возможных источников космических лучей самых высоких энергий (выше предела ГЗК) находятся столь далеко, что частицы на пути к Земле теряют приобретённую в источнике энергию. А при энергиях меньше предела ГЗК отклонение частиц магнитным полем Галактики ещё велико, и направление прихода частиц вряд ли сможет указать положение источника на небесной сфере.

В поиске источников космических лучей ультравысокой энергии используют анализ корреляции экспериментально измеренного направления прихода частиц с достаточно высокими энергиями - такими, что поля Галактики несильно отклоняют частицы от направления на источник. Установки предыдущего поколения пока не дали убедительных данных о корреляции направления прихода частиц с координатами какого-либо специально выделенного класса астрофизических объектов. Последние данные обсерватории Пьер Оже можно рассматривать как надежду на получение в ближайшие годы данных о роли источников типа AGN в создании интенсивных потоков частиц с энергией порядка предела ГЗК.

Интересно, что на установке AGASA были получены указания на существование «пустых» направлений (таких, где нет никаких известных источников), по которым за время наблюдения приходят две и даже три частицы. Это вызвало большой интерес у физиков, занимающихся космологией - наукой о происхождении и развитии Вселенной, неразрывно связанной с физикой элементарных частиц. Оказывается, что в некоторых моделях структуры микромира и развития Вселенной (теории Большого взрыва) предсказано сохранение в современной Вселенной сверхмассивных элементарных частиц с массой порядка 10 23 –10 24 эВ, из которых должно состоять вещество на самой ранней стадии Большого взрыва. Их распределение во Вселенной не очень ясно: они могут быть либо равномерно распределены в пространстве, либо «притянуты» к массивным областям Вселенной. Главная их особенность в том, что эти частицы нестабильны и могут распадаться на более лёгкие, в том числе на стабильные протоны, фотоны и нейтрино, которые приобретают огромные кинетические энергии - более 10 20 эВ. Места, где сохранились такие частицы (топологические дефекты Вселенной), могут оказаться источниками протонов, фотонов или нейтрино ультравысокой энергии.

Как и в случае галактических источников, существование внегалактических ускорителей космических лучей ультравысокой энергии подтверждают данные детекторов гамма-излучения, например телескопы установки HESS, направленные на перечисленные выше внегалактические объекты - кандидаты в источники космических лучей.

Среди них самыми перспективными оказались ядра активных галактик (AGN) со струями газа. Один из наиболее хорошо изученных на установке HESS объектов - галактика М87 в созвездии Дева, на расстоянии 50 миллионов световых лет от нашей Галактики. В её центре находится чёрная дыра, которая обеспечивает энергией процессы вблизи неё и, в частности, гигантскую струю плазмы, принадлежащей этой галактике. Ускорение космических лучей в М87 прямо подтверждают наблюдения её гамма-излучения, энергетический спектр фотонов которого с энергией 1–10 ТэВ (10 12 –10 13 эВ), наблюдаемый на установке HESS. Наблюдаемая интенсивность гамма-излучения от М87 составляет примерно 3% от интенсивности Краба. С учётом разницы в расстоянии до этих объектов (5000 раз) это означает, что светимость М87 превышает светимость Краба в 25 миллионов раз!

Модели ускорения частиц, созданные для этого объекта, показывают, что интенсивность частиц, ускоряемых в М87, может быть так велика, что даже на расстоянии 50 миллионов световых лет вклад этого источника сможет обеспечить наблюдаемую интенсивность космических лучей с энергией выше 10 19 эВ.

Но вот загадка: в современных данных о ШАЛ по направлению на этот источник нет избытка частиц с энергией порядка 10 19 эВ. А не проявится ли этот источник в результатах будущих космических экспериментов, при таких энергиях, когда дальние источники уже не дают вклада в наблюдаемые события? Ситуация с изломом в энергетическом спектре может повториться ещё раз, например при энергии 2·10 20 . Но на этот раз источник должен быть виден в измерениях направления траектории первичной частицы, так как энергии > 2·10 20 эВ настолько велики, что частицы не должны отклоняться в галактических магнитных полях.

Как видим, после столетней истории изучения космических лучей мы снова ждём новых открытий, на этот раз космического излучения ультравысокой энергии, природа которого пока неизвестна, но может играть важную роль в устройстве Вселенной.

Литература:
1) Добротин Н.А. Космические лучи . - М.: Изд. АН СССР, 1963.
2) Мурзин В.С. Введение в физику космических лучей . - М.: Изд. МГУ, 1988.
3) Панасюк М. И. Странники Вселенной, или Эхо Большого взрыва . - Фрязино: «Век2», 2005.
4) Росси Б. Космические лучи . - М.: Атомиздат, 1966.
5) Хренов Б.А. Релятивистские метеоры // Наука в России, 2001, № 4.
6) Хренов Б.А. и Панасюк М.И. Посланники космоса: дальнего или ближнего? // Природа, 2006, № 2.
7) Хренов Б.А. и Климов П.А. Ожидается открытие // Природа, 2008, № 4.

Космические лучи — это потоки заряженных частиц высоких энергий, которые состоят из протонов. Они приходят к Земле со всех направлений межзвёздного пространства, в том числе от Солнца. После , происходящих на , интенсивность потоков резко возрастает.Космические лучи напоминают очень разреженный газ, в котором частички почти не взаимодействуют между собой. Но, пролетая сквозь вещество, сталкиваются с ядрами его атомов и рождают нестабильные элементарные частицы (по этим следам их и обнаруживают). Околоземное космическое пространство пронизывают космические лучи двух типов: стационарные и нестационарные. К стационарным относятся потоки частиц из , нестационарные – это лучи солнечного происхождения.

Каждую секунду потоки всевозможных частиц обрушиваются на Землю из глубин космоса. Космические лучи преодолевают гигантские расстояния, но не теряют своей мощи. Они вторгаются в атмосферу нашей планеты, ионизируя составляющие её газы. Пионером этого открытия стал В. Гесс: при помощи воздушного шара он сумел определить, что ионизация газов с высотой не уменьшается, как считалось, а увеличивается. Это свидетельствовало о том, что радиоактивное вещество, ответственное за этот процесс, находится не в нашей планете.

Виды

Галактические

Энергии первичных космических лучей, представляющих собой атомные ядра и элементарные частицы, колоссальны, и достигают значений в сотни ГэВ. При прохождении сквозь земную атмосферу, они создают новые частицы, называемые вторичными космическими лучами. Космические лучи преодолевают огромные расстояния внутри нашей галактики, постоянно изменяя направления. Они обладают почти световыми скоростями, а причина изменения направлений кроется в магнитном поле . Лучам очень сложно покинуть пределы галактики, потому что магнитное поле её замкнуто. Это позволило подтвердить теорию, что магнитное поле в нашей галактике существует, вычислить её напряжённость. Из расчётов получается, что космические лучи проходят расстояния до 10 27 см за периоды, составляющие миллиарды лет. Исходя из времени существования частиц, можно определить мощность их источников. Такими источниками, например, служат . Космические лучи способны нагревать разреженные газы до миллионов градусов. Подобный процесс существует, например, в конвективной зоне Солнца. Из этих газов образуется огромное гало, называемое галактической короной.

Альбедо

Часть лучей отражается земной атмосферой, создавая вторичные частицы – альбедо. Нейтроны альбедо снабжают радиационный пояс протонами, имеющими энергии до 10 3 МэВ и электронами, энергий в несколько МэВ.

Солнечные

Во время вспышек на Солнце выделяются потоки заряженных частиц. Они ускоряются в верхних слоях атмосферы светила и приобретают достаточно высокие энергии. Регистрация их у земной поверхности, на фоне более высокоэнергичных галактических потоков, происходит в виде резкого повышения интенсивности потока космических лучей. Основная масса солнечных лучей – протоны с энергиями в 10 6 эВ, а верхний предел их энергии – 2 . 10 10 эВ.

Лучи ультравысоких энергий

Энергия частиц таких лучей выше допустимого теоретического предела энергии, составляющего 5 . 10 19 эВ. Этот предел обусловлен взаимодействием их с фотонами первичного, реликтового, излучения. Получается, что эти космические лучи - скитальцы из глубин Вселенной. Обсерватория AGASA запеленговала несколько десятков источников частиц ультравысоких энергий в течение года.

Регистрация космических лучей

В современных обсерваториях отслеживание следов космических лучей производится при помощи телескопов. Частицы, имеющие высокие энергии, входя в атмосферу, взаимодействуют с атомами воздуха. В результате этого рождаются потоки пионов и мюонов, которые сами образуют другие частицы. Процесс продолжается дальше, до образования конуса из частиц, именуемого ливнем. Такие частицы обладают скоростью, которая выше световой (в воздухе), поэтому происходит их свечение. Способ даёт возможность отслеживать области неба в сотни км 2 .

Космические лучи (излучение) - это частицы, заполняющие межзвездное пространство и постоянно бомбардирующие Землю. Они открыты в 1912 г. австрийским физиком Гессом с помощью ионизационной камеры на воздушном шаре. Максимальные энергии космических лучей 10 21 эВ, т.е. на много порядков превосходят энергии, доступные современным ускорителям (10 12 эВ). Поэтому изучение космических лучей играет важную роль не только в физике космоса, но также и в физике элементарных частиц. Ряд элементарных частиц впервые был обнаружен именно в космических лучах (позитрон - Андерсон, 1932 г.; мюон () - Неддермейер и Андерсон, 1937 г.; пион () - Пауэлл, 1947 г.). Хотя в состав космических лучей входят не только заряженные, но и нейтральные частицы (особенно много фотонов и нейтрино), космическими лучами обычно называют заряженные частицы.

При обсуждении космических лучей следует уточнять, о каких именно лучах идет речь. Различают следующие типы космических лучей:

1. Галактические космические лучи - космические частицы, приходящие на Землю из недр нашей Галактики. В их состав не входят частицы, генерируемые Солнцем.

2. Солнечные космические лучи - космические частицы, генерируемые Солнцем.

Поток галактических космических лучей, бомбардирующих Землю, примерно изотропен и постоянен во времени и составляет 1 частица/см 2 сек (до входа в земную атмосферу). Плотность энергии галактических космических лучей 1 эВ/см 3 , что сравнимо с суммарной энергией электромагнитного излучения звезд, теплового движения межзвездного газа и галактического магнитного поля. Таким образом, космические лучи - важный компонент Галактики.

Состав галактических космических лучей:

    Ядерная компонента - 93% протонов, 6.5% ядер гелия, <1% более тяжелых ядер (т.е. отвечает распространенности ядер во Вселенной).

    Электроны. Их число 1% от числа ядер.

    Позитроны. Их число 10% от числа электронов.

    Антиадроны составляют меньше 1%.

Энергии галактических космических лучей охватывают огромный диапазон - не менее 15 порядков (10 6 -10 21 эВ). Их поток для частиц с E>10 9 эВ быстро уменьшается с ростом энергии. Спектр энергий ядерной компоненты, исключая низкие энергии, подчиняется выражению

n(E) = n o E - , (15.5)

ãäå n o - константа, а 2.7 при E<10 15 ýÂ è 3.1-3.2 ïðè E>10 15 эВ. Энергетический спектр ядерной компоненты показан на рис.15.6.

Поток частиц сверхвысоких энергий крайне мал. Так на площадь 10 км 2 за год попадает в среднем не более одной частицы с энергией 10 20 эВ. Характер спектра для электронов с энергиями >10 9 эВ аналогичен приведенному на рис.15.6. Поток галактических космических лучей не менялся в течение по крайней мере 1 млрд лет.

Галактические космические лучи, очевидно, имеют нетепловое происхождение. Действительно, максимальные температуры (10 9 K) достигаются в центре звезд. При этом энергия теплового движения частиц 10 5 эВ. В то же время частицы галактических космических лучей, достигающих окрестности Земли, в основном имеют энергии >10 8 ýÂ.

Рис. 15.6. Энергетический спектр ядерной компоненты космических

лучей. Энергия дана в системе центра масс.

Есть веские основания полагать, что космические лучи генерируются, главным образом, вспышками сверхновых (другие источники космических лучей - пульсары, радиогалактики, квазары). В нашей Галактике взрывы сверхновых происходят в среднем не реже одного раза в 100 лет. Легко подсчитать, что для поддержания наблюдаемой плотности энергии космических лучей (1 эВ/см 3) достаточно им передавать всего несколько процентов мощности взрыва. Выбрасываемые при вспышках сверхновых протоны, более тяжелые ядра, электроны и позитроны далее ускоряются в специфических астрофизических процессах (о них будет сказано ниже), приобретая энергетические характеристики, присущие космическим лучам.

В составе космических лучей практически нет метагалактических лучей, т.е. попавших в нашу Галактику извне. Все наблюдаемые свойства космических лучей можно объяснить исходя из того, что они образуются, накапливаются и длительное время удерживаются в нашей Галактике, медленно вытекая в межгалактическое пространство. Если бы космические частицы двигались прямолинейно, они вышли бы за пределы Галактики через несколько тысяч лет после своего возникновения. Столь быстрая утечка привела бы к невосполнимым потерям и резкому снижению интенсивности космических лучей.

На самом деле наличие межзвездного магнитного поля с сильно запутанной конфигурацией силовых линий заставляет заряженные частицы двигаться по сложным траекториям (это движение напоминает диффузию молекул), увеличивая время пребывания этих частиц в Галактике в тысячи раз. Возраст основной массы частиц космических лучей оценивают в десятки миллионов лет. Космические частицы сверхвысоких энергий отклоняются галактическим магнитным полем слабо и сравни-тельно быстро покидают Галактику. Этим, возможно, объясняется излом в спектре космических лучей при энергии 310 15 ýÂ.

Остановимся очень кратко на проблеме ускорения космических лучей. Частицы космических лучей двигаются в разряженной и электрически нейтральной космической плазме. В ней нет значительных электростатических полей, способных ускорять заряженные частицы за счет разности потенциалов между различными точками траектории. Но в плазме могут возникать электрические поля индукционного и импульсного типа. Так индукционное (вихревое) электрическое поле появляется, как известно, при увеличении напряженности магнитного поля со временем (так называемый, бетатронный эффект). Ускорение частиц может быть также вызвано их взаимодействием с электрическим полем плазменных волн в областях с интенсивной турбулентностью плазмы. Существуют и другие механизмы ускорения, на которых мы не имеем возможности останавливаться в данном курсе. Более детальное рассмотрение показывает, что предложенные механизмы ускорения способны обеспечить рост энергии заряженных частиц, выброшенных при взрывах сверхновых, с 10 5 äî 10 21 ýÂ.

Заряженные частицы, испускаемые Солнцем, - солнечные космические лучи – весьма важный компонент космического излучения, бомбардирующего Землю. Эти частицы ускоряются до высоких энергий в верхней части атмосферы Солнца во время солнечных вспышек. Солнечные вспышки подвержены определенным временным циклам. Самые мощные повторяются с периодом 11 лет, менее мощные – с периодом 27 дней. Мощные солнечные вспышки могут увеличить поток космических лучей, падающих на Землю со стороны Солнца, в 10 6 раз по сравнению с галактическим.

По сравнению с галактическими космическими лучами в солнечных космических лучах больше протонов (до 98-99% всех ядер) и соответственно меньше ядер гелия (1.5%). В них практически нет других ядер. Содержание ядер с Z2 в солнечных космических лучах отражает состав солнечной атмосферы. Энергии частиц солнечных космических лучей меняются в интервале 10 5 -10 11 эВ. Их энергетический спектр имеет вид степенной функции (15.5), где - уменьшается от 7 до 2 по мере уменьшения энергии.

Все приведенные выше характеристики космических лучей относятся к космическим частицам до входа в атмосферу Земли, т.е. к, так называемому, первичному космическому излучению . В результате взаимодействия с ядрами атмосферы (главным образом, кислородом и азотом) высокоэнергичные частицы первичных космических лучей (прежде всего протоны) создают большое число вторичных частиц – адронов (пионов, протонов, нейтронов, антинуклонов и т.д.), лептонов (мюонов, электронов, позитронов, нейтрино) и фотонов. Развивается сложный многоступенчатый каскадный процесс. Кинетическая энергия вторичных частиц расходуется в основном на ионизацию атмосферы.

Толщина земной атмосферы около 1000 г/см 2 . В то же время пробеги высокоэнергичных протонов в воздухе 70-80 г/см 2 , а ядер гелия – 20-30 г/см 2 . Таким образом, высокоэнергичный протон может испытать до 15 столкновений с ядрами атмосферы и вероятность дойти до уровня моря у первичного протона крайне мала. Первое столкновение происходит обычно на высоте 20 км.

Лептоны и фотоны появляются в результате слабых и электромагнитных распадов вторичных адронов (главным образом, пионов) и рождения -квантами e - e + -пар в кулоновском поле ядер:

ÿäðî + ÿäðî + e - +e + .

Таким образом, вместо одной первичной частицы возникает большое число вторичных, которые делят на адронную, мюонную и электронно-фотонную компоненты. Лавинообразное нарастание числа частиц может привести к тому, что в максимуме каскада их число может достигать 10 6 -10 9 (при энергии первичного протона >10 14 эВ). Такой каскад покрывает большую площадь (много квадратных километров) и называется широким атмосферным ливнем (ðèñ.15.7).

После достижения максимальных размеров происходит затухание каскада в основном за счет потери энергии на ионизацию атмосферы. Поверхности Земли достигают в основном релятивистские мюоны. Сильнее поглощается электронно-фотонная компонента и практически полностью “вымирает” адронная составляющая каскада. В целом поток частиц космических лучей на уровне моря примерно в 100 раз меньше потока первичных космических лучей, составляя около 0.01 частицы/см 2 ñåê.

Дифференциальный энергетический спектр космических лучей носит степенной характер (в дважды логарифмическом масштабе - наклонная прямая) (минимальные энергии - жёлтая зона, солнечная модуляция, средние энергии - синяя зона, ГКЛ, максимальные энергии - пурпурная зона, внегалактические КЛ)

Космические лучи - элементарные частицы и ядра атомов, движущиеся с высокими энергиями в космическом пространстве.

Основные сведения

Физику космических лучей принято считать частью физики высоких энергий и физики элементарных частиц .

Физика космических лучей изучает:

  • процессы, приводящие к возникновению и ускорению космических лучей;
  • частицы космических лучей, их природу и свойства;
  • явления, вызванные частицами космических лучей в космическом пространстве, и .

Изучение потоков высокоэнергетичных заряженных и нейтральных космических частиц, попадающих на границу атмосферы Земли, является важнейшими экспериментальными задачами.

Классификация по происхождению космических лучей:

  • в Галактике
  • в межпланетном пространстве

Первичными принято называть внегалактические и галактические лучи. Вторичными принято называть потоки частиц, проходящие и трансформирующиеся в атмосфере Земли.

Космические лучи являются составляющей естественной радиации (фоновой радиации) на поверхности Земли и в атмосфере.

До развития ускорительной техники космические лучи служили единственным источником элементарных частиц высокой энергии. Так, позитрон и мюон были впервые найдены в космических лучах.

Энергетический спектр космических лучей на 43% состоит из энергии протонов, ещё на 23% - из энергии гелия (альфа-частиц) и 34% энергии, переносимой остальными частицами.

По количеству частиц космические лучи на 92% состоят из протонов, на 6% - из ядер гелия, около 1% составляют более тяжелые элементы, и около 1% приходится на электроны. При изучении источников космических лучей вне протонно-ядерная компонента в основном обнаруживается по создаваемому ею потоку гамма-лучей , а электронная компонента - по порождаемому ею синхротронному излучению, которое приходится на радиодиапазон (в частности, на метровые волны - при излучении в магнитном поле межзвёздной среды), а при сильных магнитных полях в районе источника космических лучей - и на более высокочастотные диапазоны. Поэтому электронная компонента может обнаруживаться и наземными астрономическими инструментами.

Традиционно частицы, наблюдаемые в КЛ, делят на следующие группы: (соответственно, протоны, альфа-частицы, легкие, средние, тяжелые и сверхтяжелые). Особенностью химического состава первичного космического излучения является аномально высокое (в несколько тысяч раз) содержание ядер группы L (литий, бериллий, бор) по сравнению с составом звёзд и межзвёздного газа. Данное явление объясняется тем, что механизм генерации космических частиц в первую очередь ускоряет тяжелые ядра, которые при взаимодействии с протонами межзвёздной среды распадаются на более лёгкие ядра. Данное предположение подтверждается тем, что КЛ обладают очень высокой степенью изотропии.

История физики космических лучей

Впервые указание на возможность существования ионизирующего излучения внеземного происхождения было получено в начале XX века в опытах по изучению проводимости газов. Обнаруженный спонтанный электрический ток в газе не удавалось объяснить ионизацией, возникающей от естественной радиоактивности Земли. Наблюдаемое излучение оказалось настолько проникающим, что в ионизационных камерах, экранированных толстыми слоями свинца, все равно наблюдался остаточный ток. В 1911-1912 годах был проведен ряд экспериментов с ионизационными камерами на воздушных шарах. Гесс обнаружил, что излучение растет с высотой, в то время как ионизация, вызванная радиоактивностью Земли, должна была бы падать с высотой. В опытах Кольхерстера было доказано, что это излучение направлено сверху вниз.

В 1921-1925 годах американский физик Милликен, изучая поглощение космического излучения в атмосфере Земли в зависимости от высоты наблюдения, обнаружил, что в свинце это излучение поглощается так же, как и гамма-излучение ядер. Милликен первым и назвал это излучение космическими лучами. В 1925 году советские физики Л. А. Тувим и Л. В. Мысовский провели измерение поглощения космического излучения в воде: оказалось, что это излучение поглощалось в десять раз слабее, чем гамма-излучение ядер. Мысовский и Тувим обнаружили также, что интенсивность излучения зависит от барометрического давления - открыли «барометрический эффект». Опыты Д. В. Скобельцына с камерой Вильсона, помещенной в постоянное магнитное поле, дали возможность «увидеть», за счет ионизации, следы (треки) космических частиц. Д. В. Скобельцын открыл ливни космических частиц. Эксперименты в космических лучах позволили сделать ряд принципиальных для физики микромира открытий.

В 1932 году Андерсон открыл в космических лучах позитрон. В 1937 году Андерсоном и Неддермейером были открыты мюоны и указан тип их распада. В 1947 году открыли π-мезоны. В 1955 году в космических лучах установили наличие К-мезонов, а также и тяжелых нейтральных частиц - гиперонов. Квантовая характеристика «странность» появилась в опытах с космическими лучами. Эксперименты в космических лучах поставили вопрос о сохранении четности, обнаружили процессы множественной генерации частиц в нуклонных взаимодействиях, позволили определить величину эффективного сечения взаимодействия нуклонов высокой энергии. Появление космических ракет и спутников привело к новым открытиям - обнаружению Земли (1958 г., (С. Н. Вернов и А. Е. Чудаков) и, независимо от них в том же году, Ван Аллен), и позволило создать новые методы исследования галактического и межгалактического пространств.

Потоки высокоэнергичных заряженных частиц в околоземном космическом пространстве

В околоземном космическом пространстве (ОКП) различают несколько типов космических лучей. К стационарным принято относить галактические космические лучи (ГКЛ), частицы альбедо и радиационный пояс. К нестационарным - солнечные космические лучи (СКЛ).

Галактические космические лучи (ГКЛ)

Галактические космические лучи (ГКЛ) состоят из ядер различных химических элементов с кинетической энергией Е более нескольких десятков МэВ/нуклон, а также электронов и позитронов с Е >10 МэВ. Эти частицы приходят в межпланетное пространство из межзвёздной среды. Наиболее вероятными источниками космических лучей считаются вспышки и образующиеся при этом . Электромагнитные поля пульсаров ускоряют заряженные частицы, которые затем рассеиваются на межзвёздных магнитных полях. Возможно, однако, что в области Е <100 МэВ/нуклон частицы образуются за счет ускорения в межпланетной среде частиц и . Дифференциальный энергетический спектр ГКЛ носит степенной характер.

Вторичные частицы в магнитосфере Земли: радиационный пояс, частицы альбедо

Космические лучи ультравысоких энергий

Энергия некоторых частиц превышает предел ГЗК (Грайзена - Зацепина - Кузьмина) - теоретический предел энергии для космических лучей 5·10 19 эВ, вызванный их взаимодействием с фотонами реликтового излучения. Несколько десятков таких частиц за год было зарегистрировано обсерваторией AGASA. Эти наблюдения ещё не имеют достаточно обоснованного научного объяснения.

Регистрация космических лучей

Долгое время после открытия космических лучей, методы их регистрации не отличались от методов регистрации частиц в ускорителях, чаще всего - газоразрядные счётчики или ядерные фотографические эмульсии, поднимаемые в стратосферу, или в космическое пространство. Но данный метод не позволяет вести систематические наблюдения частиц с высокой энергией, так как они появляются достаточно редко, а пространство, в котором такой счётчик может вести наблюдения, ограничено его размерами.

Современные обсерватории работают на других принципах. Когда высокоэнергетичная частица входит в атмосферу, она, взаимодействуя с атомами воздуха на первых 100 г/см², рождает целый шквал частиц, в основном пионов и мюонов, которые, в свою очередь, рождают другие частицы, и так далее. Образуется конус из частиц, который называют ливнем. Такие частицы двигаются со скоростью, превышающей скорость света в воздухе, благодаря чему возникает черенковское свечение, регистрируемое . Такая методика позволяет следить за областями неба площадью в сотни квадратных километров.

Космическими лучами принято называть совокупность потоков атомных ядер высокой энергии, в основном протонов, падающих на Землю из мирового пространства, и образуемое ими в земной атмосфере вторичное излучение, в котором встречаются все известные в настоящее время элементарные частицы.

§ 54. ОТКРЫТИЕ КОСМИЧЕСКИХ ЛУЧЕЙ

Исследования космических лучей начались в первые годы нашего столетия в связи с изучением причины непрерывной утечки заряда электроскопов. Герметически закрытый электроскоп разряжался даже при самой совершенной изоляции.

В 1910-1925 гг. различными опытами на воздушных шарах и под землей было показано, что причиной этого является некоторое сильно проникающее излучение, которое зарождается где-то вне Земли и интенсивность которого падает по мере проникновения его в атмосферу. Оно и вызывает ионизацию воздуха в ионизационной камере и связанную с этим разрядку электроскопов. Милликен назвал этот поток излучения космическими лучами.

В дальнейших опытах было установлено изменение интенсивности космического излучения (плотности потока частиц) в зависимости от высоты наблюдения (рис. 105).

Рис. 105. Зависимость числа космических частиц от высоты в относительных единицах)

Интенсивность космических лучей сравнительно быстро растет примерно до высоты над уровнем моря, затем темп роста

замедляется и на высоте интенсивность достигает максимального значения. При подъеме на большие высоты наблюдается ее уменьшение, а начиная с высоты интенсивность космических лучей остается постоянной. В результате многочисленных экспериментов установлено, что космические лучи приходят на поверхность Земли со всех сторон равномерно и во Вселенной нет места, которое можно было бы назвать источником космических лучей.

При исследовании космических лучей было сделано много принципиально важных открытий. Так, в 1932 г. Андерсоном был открыт в космических лучах позитрон, предсказанный теорией Дирака. В 1937 г. Андерсоном и Нидермайером были открыты -мезоны и указан тип их распада. В 1947 г. Пауэллом были открыты -мезоны, которые согласно теории Юкава были необходимы для объяснения ядерных сил. В 1955 г. было установлено наличие в космических лучах К-мезонов, а также тяжелых нейтральных частиц с массой, превышающей массу протона - гиперонов. Исследования космических лучей привели к необходимости введения квантовой характеристики, названной странностью. Опыты с космическими лучами также поставили вопрос о возможности несохранения четности. В космических лучах впервые были обнаружены процессы множественной генерации частиц в одном акте столкновения.

Исследования последних лет позволили определить величину эффективного сечения взаимодействия нуклонов высокой энергии с ядрами. Так как в составе космических лучей имеются частицы с энергией, достигающей то космические лучи являются единственным источником информации о взаимодействии частиц столь высокой энергии.

Использование при изучении космических лучей ракет и искусственных спутников привело к новым открытиям - обнаружению радиационных поясов Земли. Возможность исследовать первичные космическое излучение за пределами земной атмосферы и создало новые методы изучения галактического и межгалактического пространства. Таким образом, исследования космических лучей, перейдя из области геофизики в область ядерной физики и физики элементарных частиц, сейчас теснейшим образом объединяют изучение строения микромира с проблемами астрофизики.

В связи с созданием ускорителей на энергии в десятки центр тяжести ядерного направления в физике космических лучей переместился в область сверхвысоких энергий, где продолжаются исследования ядерных взаимодействий, структуры нуклонов и других элементарных частиц. Кроме этого возникло самостоятельное направление - изучение космических лучей в геофизическом и астрофизическом аспектах. Предметом исследований здесь являются: первичные космические лучи у Земли (химический состав, энергетический спектр, пространственное распределение); солнечные лучи (их генерация, движение к Земле и влияние на земную

ионосферу); влияние на космические лучи межпланетной и межзвездной среды и магнитных полей; радиационные пояса вблизи Земли и других планет; происхождение космических лучей. Важнейшим средством изучения этих проблем является детальное исследование наблюдаемых на Земле и вблизи от нее разнообразных вариаций в потоке космических лучей.