Интерференционная картина. Условия максимума и минимума Дифракция света

Исследование интерференции света и определение длины волны используемого излучения

Методическое указание к лабораторной работе

ПЕНЗА 2007


Цель работы - изучение методов наблюдения интерференционной картины и измерения ее параметров, определение длины волны используемого излучения.

ПРИБОРЫ И ПРИНАДЛЕЖНОСТИ

1.Оптическая скамья.

3.Бипризма Френеля.

5.Отражающий экран.

МЕТОДЫ ПОЛУЧЕНИЯ ИНТЕРФЕРЕНЦИОННОЙ КАРТИНЫ

Из опыта известно, что если на некоторую поверхность падает свет от двух источников (например, от двух ламп накаливания), то освещенность этой поверхности складывается из освещенностей, создаваемых каждым источником в отдельности. Освещенность поверхности определяется величиной светового потока, приходящегося на единицу площади, следовательно, суммарный световой поток, падающий, в рассматриваемом случае на любой элемент поверхности, равен сумме потоков от каждого из источников. Такого рода наблюдения привели к открытию закона независимости световых пучков.

Однако ситуация принципиально изменяется, если поверхность освещается двумя световыми волнами, испускаемыми одним и тем же точечным источником, но проходящими до места встречи различные пути. В этом случае, как показывает опыт, отдельные участки поверхности будут освещены очень слабо; световые волны, накладываясь, гасят друг друга. Освещенность же других участков, на которых накладывающиеся волны усиливают друг друга, будет существенно превосходить удвоенную освещенность, которую могла бы создать одна из этих волн.

Таким образом, на поверхности будет наблюдаться картина чередующихся максимумов и минимумов освещенности, которую называют интерференционной картиной (рис.1).

Появление такой картины при наложении световых волн носит название интерференции света. Необходимым условием интерференции волн является когерентность, т.е. равенство их частот и постоянство во времени разности фаз. Два независимых источника света, например, две электрические лампочки, создают некогерентные волны и не образуют интерференционную картину. Существуют различные методы, позволяющие искусственно создавать когерентные волны и наблюдать интерференцию света. Рассмотрим некоторые из них.


1.1. Метод Юнга

Первым экспериментом, позволившим произвести количественный анализ явления интерференции, был опыт Юнга, поставленный в 1802 году.

Представим себе очень малый источник монохроматического света о (рис.2), освещающий два столь же малых и близко расположенных друг от друга отверстия и в экране А .



По принципу Гюйгенса эти отверстия можно рассматривать как самостоятельные источники вторичных сферических волн. Если точки и расположены на одинаковых расстояниях от источника света S, то фазы колебаний в этих точках будут одинаковы (волны когерентны), а в какой-либо точке Р второго экрана В , куда будут приходить световые волны от и , разность фаз, накладывающихся друг на друга колебаний, будет зависеть от разности , Носящей название разности хода.

При разности хода, равной четному числу полуволн, фазы колебаний будут отличатся на величину кратную 2π, и световые волны при наложении в точке Р будут усиливать друг друга, точка Р экрана будет больше освещена, чем соседние точкина прямой ОР .

Условие максимальной освещенности точки Р можно записать в виде:

где К =1,2,3,4…

Если же разность хода будет равна нечетному числу полуволн, то в точке Р колебания, распространяющееся от и , будут друг друга гасить, и эта точка освещена не будет. Условие минимальной освещенности точки

Те же точки экрана В , разность хода до которых удовлетворяет условию

будут освещены, но их освещенность будет меньше максимальной. Поэтому наблюдаемая на экране интерференционная картина представляет собой систему полос, в пределах которой освещенность при переходе от светлой полосы к темной изменяется плавно по синусоидальному закону

Для точки О экрана, равноудаленной от источников и , разность хода лучей и равна нулю, т.е. в результате интерференции эта точка будет максимально освещена (максимум нулевого порядка).



Определим расстояние до тех точек , в которых будут наблюдаться следующие интерференционные максимумы, т.е. определим .

Из прямоугольных треугольников и имеем (по теореме Пифагора):

Вычитая почленно получим

Перепишем это равенство в виде

Полагая, что расстояние между источниками много меньше расстояния от источников до экрана , можно считать, что

Тогда равенство (5) примет вид

В свою очередь , тогда , откуда

И наконец, расстояние до точек, в которых наблюдаются максимумы, найдем из условий (1) и (8)

Откуда (9)

Следовательно, первая максимально освещенная линия будет расположена на расстоянии начиная от середины экрана:

Вторая линия с максимальной освещенностью будет располагаться на расстоянии

Расстояние до точек, где наблюдаются минимумы (темные линии), получим из условия

где = 0,1,2,3...

Период интерференционной картины, т.е. расстояние между ближайшими линиями одинаковой освещенности (например, максимальной или минимальной), как следует из (9) или (10), равен

При освещении отверстий и белым (полихроматическим) светом на экране получаются цветные полосы, а не темные и светлые как в описанном опыте.

1.2. Метод Ллойда

На рис. 3 изображено интерференционное устройство, состоящее из действительного источника свете S и плоского зеркала (зеркала Ллойда). Один световой пучок, исходящий из источника света, отражается от зеркала и попадает на экран . Этот пучок света можно представить исходяцим от мнимого изображения

источника света , образованного зеркалом. Кроме того, на экран попадают лучи, идущие непосредственно из источника света S . В той области экрана, где перекрываются оба пучка света, т.е. накладываются две когерентные волны, будет наблюдаться интерференционная картина.

1.3. Бипризма Френеля

Когерентные волны могут быть поручены также при помощи бипризмы Френеля - двух призм (с очень малыми преломляющими углами), сложенных основаниями.

На рис.4 дана схема хода лучей в этом опыте.

Пучок расходящихся лучей от источника света S , проходя верхнюю призму, преломляется к ее основанию и распространяется дальше как бы из точки - мнимого изображения точки . Другой пучок, падающий на нижнюю призму, преломляясь, отклоняется вверх. Точкой, из которой расходятся лучи этого пучка, служит - тоже мнимое изображение точки . Оба пучка накладываются друг на друга и дают на экране интерференционную картину. Результат интерференции в каждой точке экрана, например, в точке Р зависит от разности хода лучей, падающих в эту точку, т.е. от разности расстояний до мнимых источников света и .

2. ОПИСАНИЕ УСТАНОВКИ
И ВЫВОД РАСЧЕТНОЙ ФОРМУЛЫ

В настоящей работе требуется по результатам измерения периода наблюдаемой интерференционной картины определить длину волны используемого монохроматического излучения. Источником излучения является лазер, размещенный вместе с другими узлами экспериментальной установки на оптической скамье (физика работы лазера изложена в приложении). Оптическая схема установки приведена на рис.5.


Параллельный пучок света, формируемый лазером ЛГ , фокусируется линзой Л 1 , и её фокальная точка является источником, освещающим бипризму Френеля БФ . Учитывая, что расстояние от точки до бипризмы много больше светового пятна на бипризме, т.е. расходимость пучка лучей, исходящих из фокуса линзы Л 1 , мала, в первом приближении можно считать, что все лучи, падающие на бипризму, параллельны. Тогда лучи, падающие на верхний клин бипризмы, отклоняются вниз на угол

где п - показатель преломления бипризмы;

Преломляющий угол бипризмы.

Лучи же, падающие на нижний клин, отклоняются вверх так же на угол . Таким образом, от бипризмы к линзе Л 2 распространяются два параллельных пучка света (две плоские волны), угол между которыми равен 2 . Линза Л 2 фокусирует эти пучки и формирует в своей фокальной плоскости два точечных источника, отстоящих друг от друга на расстоянии

где - фокусное расстояние линзы Л 2 .

Учитывая, что угон так же как и угол очень мал, расстояние между источниками можно записать в виде

Когерентные волны, распространяющиеся от этих источников накладываются друг на друга, и формируют на экране интерференционную картину, период которой описывается выражением (11).Подставляя в это выражение

(что следует из формул (12), (14) и рис.5) для периода запишем

Отсюда получим расчетную формулу

Параметры, входящие в формулу (17) сведены в таблицу.

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

1. Включить вилку сетевого шнура блока питания лазера в сетевую розетку. Тумблером «сеть», расположенным на лицевой панели блока питания, включить лазер.

2. На оптической скамье путем перемещения бипризмы и линзы (перемещая тележки) установить их в таком положении, при котором будет отчетливо видна интерференционная картина, аналогичная рис.1.

3. По шкале оптической скамьи определить расстояние L от линзы Л 1 до экрана Э .

4. По масштабной сетке экрана определить период интерференционной картины (для наиболее точного определения периода считают, сколько светлых полос умещается на отрезке в 20-30 мм, а затем длину отрезка делят на число полос).

5. Пользуясь данными таблицы и расчетной формулой (17), вычислить длину волны .

6. Операции, указанные в пп. 2-5, повторить 3-4 раза, смещая каждый раз линзу Л 1 на 50-100мм от первоначального положения.

7. Полученные значения длины волны усреднить.

№ опыта п , м L, м , м , м ср, м
1,53
1,53
1,53
1,53

Контрольные вопросы

1. Что такое интерференция волн?

2. Каковы условия возникновения интерференционной картины?

3. Назовите методы получения когерентных световых волн.

4. Каковы условия образования интерференционных максимумов и минимумов?

5. Объясните, как зависит период интерференционной картины от преломляющегося угла бипризмы и длины световой волны.

6. Каково назначение лазера в данной работе?

7. Начертите оптическую схему установки и объясните назначение элементов.


Приложение

Физические основы работы лазеров

Изучая механизм изучения и поглощения квантовой системой (атомом или Молекулой) мы выяснили, что при переходе квантовой системы из одного энергетического состояния в другое происходит излучение или поглощение порции электромагнитной анергии (рис. 6).

При этом говорилось лишь о таком механизме излучения, при котором атом переходит на более низкий энергетический уровень самопроизвольно (спонтанно), т.е. без всякого внешнего толчка (тепловое излучение, люминесценция и т.п.). Однако этот механизм излучения не является единственно возможным.

А.Эйнштейном в 1917 г. было установлено, что квантовая система может излучить квант энергии (перейдя при этом в состояние с Меньшей энергией) под, влиянием внешнего электромагнитного поля. Этот эффект получил название индуцированного (стимулированного) излучения. Оно является процессом, обратным процессу поглощения фотонов средой (отрицательный коэффициент поглощения). То есть при воздействии на возбужденный атом другим, внешним фотоном, имеющим энергию, равную энергии фотона излучаемого самопроизвольно, возбужденный атом перейдет не более низкий энергетический уровень и испустит фотон, который добавится к падающему ("рис.6,б).

Индуцированное электромагнитное излучение обладает замечательным свойством, оно тождественно с первичным падающим на вещество излучением, т.е. совпадает с ним по частоте, направленно распространения и поляризации и когерентно во всем объеме вещества. При самопроизвольном же испускании фотоны имеют различные фазы и направления, а частоты их заключены в некотором интервале значений.

Среды, в которых возможно индуцированное (стимулированное) излучение, обладают отрицательным коэффициентом поглощения, так как лучистый поток, проходя сквозь такие среды, не ослабляется, а усиливается. Эти среды отличаются от обычных тем, что в них возбужденных атомов больше, чем невозбужденных.

В нормальных условиях поглощение всегда преобладает над вынужденным излучением. Это объясняется тем, что обычно число невозбужденных атомов всегда больше числа возбужденных атомов, а вероятности переходов в ту или другую сторону под влиянием внешних фотонов одинаковы ("см.рис.б,а).

Возможность создания квантовой системы, способной отдавать энергию электромагнитной волне, впервые была обоснована в 1939 г. советским физиком В.А.Фабрикантом. Позднее, в 1955 г. советские физики Н.Г.Басов и A.M.Прохоров и независимо от них американские физики Л.Таунс и Дж.Гордон разработали впервые действующие квантовые приборы, основанные на использовании индуцированного излучения.

Приборы, использующие индуцированное излучение, могут работать как в режиме усиления, так и в режиме генерации. В соответствии с этим они называются квантовыми усилителями или квантовыми генераторами. Их называют также сокращенно лазерами (если это усиление или генерирование видимого света) и мазерами - при усилении (или генерировании) более длинноволнового излучения (инфракрасные лучи, радиоволны).

В лазере главными основными частями являются: активная среда, в которой возникает вынужденное излучение, источник возбуждения частиц этой среды («накалка») и устройство, позволяющее усиливаться фотонной лавине.

В качество рабочего элемента (активной среды) современных квантовых усилителей и генераторов применяются различные вещества, чаще всего в твердом и пи газообразном состоянии.

Рассмотрим один из видов квантового генератора на синтетическом рубине (рис.7). Рабочим элементом является цилиндр 2 из розового рубина (активная среда), который по химическому составу представляет собой окись алюминия -корунд, в котором атомы алюминия в незначительном количестве замещены атомами хрома. Чем больше содержание хрома, тем более насыщен красный цвет рубина. Его окраска обязана своим происхождением тому, что атомы хрома имеют избирательное поглощение света в зелено-желтый части спектра. При этом поглотившие излучение атомы хрома переходят в возбужденное состояние. Обратный переход сопровождается испусканием фотонов.

Размеры цилиндра могут быть приблизительно от 0,1 до 2 см в диаметре и от 2 до 23 см по длине. Плоские торцевые концы его тщательно отполированы и параллельны с высокой степенью точности. На них наносится серебряное покрытие так, что один конец рубина становится полностью отражающим (зеркальным), а другой, излучающий, посеребрен не так плотно и является частично отражающим (коэффициент пропускания обычно от 10 до 25%).

Рубиновый цилиндр окружен витками спиральной импульсной лампы 1, дающей главным образом зеленое и голубое излучение. За счёт энергии этого излучения и происходит возбуждение. В явлении генерации света участвуют только ионы хрома.

На рис. 8 дана, упрощенная схема возникновения стимулированного излучения в рубине. При облучении кристалла рубина светом (от лампы) с длиной волны 5600А (зеленый), ионы хрома, находившиеся ранее в основном состоянии на энергетическом уровне 1, переходят на верхний энергетический уровень 3, точнее - на уровни, лежащие в полосе 3.

В течение короткого (но вполне определенного) времени некоторые из этих ионов перейдут обратно на уровень 1 с излучением, другие - на уровень 2, который называется метастабильным (R –уровень). При этом переходе излучения не происходит: ионы хрома отдают энергию кристаллической решетке рубина. На метастабильном уровне (промежуточном) ионы находятся более длительное время, чем на верхнем, в результате чего достигается избыточная населенность (инверсная населенность) метастабильного уровня 1. Это носит название оптической накачки.

Если теперь на рубин направить излучение с частотой, соответствующей энергии перехода с уровня 2 на уровень 1, т.е.

то это излучение стимулирует ионы, находящиеся на уровне 2, отдать избыток своей энергии и перейти на уровень 1. Переход сопровождается излучением фотонов той же частоты

Таким образом, первоначальный сигнал многократно усиливается и происходит лавинообразное излучение узкой красной линий

Фотоны, которые движутся непараллельно продольной оси кристалла, покидают кристалл, проходя через прозрачные боковые стенки.

По этой причине выходной пучок образуется вследствие того, что потоки фотонов, претерпевая многократные отражения от передней и задней зеркальных граней рубинового цилиндра, достигнув -достаточной мощности, выходят наружу через ту торцевую грань, которая обладает некоторой прозрачностью.

Острая направленность луча позволяет концентрировать энергию на чрезвычайно малые площади. Энергия импульса лазера порядка 1 Дж, а время импульса порядка 1 мкс. Следовательно, мощность импульса порядка 1000 Вт.

Если такой луч сконцентрировать на площадь 100 мкм, то удельная мощность во время импульса составит 10 9 Вт/см. При такой мощности любые тугоплавкие материалы превращаются в пар. Мощный и очень узкий пучок когерентного света уже нашел себе применение в технике для микросварки и изготовления отверстий в медицине - в качестве хирургического ножа при глазных операциях («приваривание» отслоившейся сетчатки глаза) и пр.

ГАЗОВЫЙ ЛАЗЕРЫ

Спустя год после создания в I960 году американским физиком Т.Мейманом рубинового лазера, был создан газовый лазер, в котором активной средой служила смесь газов гелия и неона при давлении в несколько сотен раз меньше атмосферного. Газовая смесь помешалась в стеклянную или кварцевую трубку (рис. 9), в которой с помощью внешнего напряжения, приложэнного к впаянным электродам Э, поддерживался электрический разряд, т.е. электрический ток в газе.

В этом отношении трубка газового лазера мало отличается от обычных трубок неоновой рекламы. На концах газоразрядной трубки (длиной в несколько десятков сантиметров) помещены зеркала 3,образующие такой же оптический резонатор как и у рубинового лазера. Однако инверсная заселенность в этом лазере достигается иным путем, чем в твердотельных лазерах с оптической накачкой от лампы вспышки.

Свободные электроны, образующие ток электрического разряда в газе, сталкиваются с атомами вспомогательного газа, в данном случае гелия, и переводят атомы гелия в возбужденное состояние, отдавая им при ударе спою кинетическую энергию. Это возбужденное состояние метастабильно, т.е. атом гелия может находиться в нем сравнительно долго, прежде чем перейдет в основное состояние за счет спонтанного излучения. Фактически такой излучательный переход вообще не успевает произойти, поскольку атом гелия отдает свою энергию столкнувшемуся с ним атому неона. В итоге атом гелия возвращается в исходное состояние, а на энергетических уровнях неона возникает инверсная заселенность, которая обеспечивает усиление и генерацию излучения с длиной волны , соответствующей красному свету.

Мощность излучения гелий-неонового лазера, работающего в непрерывном режиме, невелика, она составляет несколько тысячных долей ватта. Однако вследствие высокой оптической однородности газовой среда, это излучение обладает очень высокой направленностью и монохроматичностью, а также когерентностью. Такое излучение легко заставить интерферировать, что и использовано в данной работе.

.

Интерференционные картины - это светлые или темные полосы, которые вызваны лучами, находящимися в фазе или в противофазе друг с другом. Световые и подобные им волны при наложении складываются, если их фазы совпадают (как в сторону увеличения, так и уменьшения), или же они компенсируют друг друга, если находятся в противофазе. Эти явления называют конструктивной и деструктивной интерференцией соответственно. Если пучок монохроматического излучения, все волны которого имеют одинаковую длину, проходит через две узкие щели (эксперимент был впервые проведен в 1801 г. Томасом Юнгом, английским ученым, который благодаря ему пришел к заключению о волновой природе света), два результирующих луча могут быть направлены на плоский экран, на котором вместо двух перекрывающихся пятен образуются интерференционные полосы - узор из равномерно чередующихся светлых и темных участков. Это явление используется, например, во всех оптических интерферометрах.

Суперпозиция

Определяющей характеристикой всех волн является суперпозиция, которая описывает поведение наложенных волн. Ее принцип состоит в том, что когда в пространстве накладываются более двух волн, то результирующее возмущение равно алгебраической сумме отдельных возмущений. Иногда при больших возмущениях это правило нарушается. Такое простое поведение приводит к ряду эффектов, которые называются интерференционными явлениями.

Явление интерференции характеризуется двумя крайними случаями. В конструктивной максимумы двух волн совпадают, и они находятся в фазе друг с другом. Результатом их суперпозиции является усиление возмущающего воздействия. Амплитуда результирующей смешанной волны равна сумме отдельных амплитуд. И, наоборот, в деструктивной интерференции максимум одной волны совпадает с минимумом второй - они находятся в противофазе. Амплитуда комбинированной волны равна разнице между амплитудами ее составных частей. В случае когда они равны, деструктивная интерференция является полной, и суммарное возмущение среды равно нулю.

Эксперимент Юнга

Интерференционная картина от двух источников однозначно указывает на наличие перекрывающихся волн. предположил, что свет - это волна, которая подчиняется принципу суперпозиции. Его знаменитым экспериментальным достижением стала демонстрация конструктивной и деструктивной в 1801 г. Современный вариант эксперимента Юнга по своей сути отличается только тем, что в нем используются когерентные источники света. Лазер равномерно освещает две параллельные щели в непрозрачной поверхности. Свет, проходя через них, наблюдается на удаленном экране. Когда ширина между щелями значительно превышает длину волны, правила геометрической оптики соблюдаются - на экране видны две освещенные области. Однако при сближении щелей свет дифрагирует, и волны на экране накладываются друг на друга. Дифракция сама по себе является следствием волновой природы света и еще одним примером данного эффекта.

Интерференционная картина

Определяет результирующее распределение интенсивности на освещенном экране. Интерференционная картина возникает, когда разность хода от щели до экрана равняется целому числу длин волн (0, λ, 2λ, ...). Эта разница гарантирует, что максимумы прибывают одновременно. Деструктивная интерференция возникает, когда разность хода равняется целому числу длин волн, смещенному на половину (λ/2, 3λ/2, ...). Юнг использовал геометрические аргументы, чтобы показать, что суперпозиция приводит к серии равноотстоящих полос или участков высокой интенсивности, соответствующих областям конструктивной интерференции, разделенных темными участками полной деструктивной.

Расстояние между отверстиями

Важным параметром геометрии с двумя щелями является отношение длины световой волны λ к расстоянию между отверстиями d. Если λ/d гораздо меньше 1, то дистанция между полосами будет небольшой, и эффекты наложения не будут наблюдаться. Используя близко расположенные прорези, Юнг смог разделить темные и светлые участки. Таким образом, он определил длины волн цветов видимого света. Их чрезвычайно малая величина объясняет, почему эти эффекты наблюдаются только в определенных условиях. Чтобы разделить участки конструктивной и деструктивной интерференции, расстояния между источниками световых волн должны быть очень малы.

Длина волны

Наблюдение интерференционных эффектов является сложной задачей по двум другим причинам. Большинство источников света излучает непрерывный спектр длин волн, вследствие чего образуются множественные интерференционные картины, наложенные друг на друга, каждая со своим интервалом между полосами. Это нивелирует наиболее выраженные эффекты, такие как участки полной темноты.

Когерентность

Чтобы интерференцию можно было наблюдать в течение продолжительного периода времени, необходимо использовать когерентные источники света. Это означает, что источники излучения должны поддерживать постоянное соотношение фаз. Например, две гармонические волны одинаковой частоты всегда имеют фиксированное фазовое соотношение в каждой точке пространства - либо в фазе, либо в противофазе, либо в некотором промежуточном состоянии. Однако большинство источников света не излучает истинно гармонические волны. Вместо этого они испускают свет, в котором случайные фазовые изменения происходят миллионы раз в секунду. Такое излучение называется некогерентным.

Идеальный источник - лазер

Интерференция все же наблюдается, когда в пространстве накладываются волны двух некогерентных источников, но интерференционные картины изменяются случайно, вместе со случайным сдвигом фазы. включая глаза, не могут зарегистрировать быстро изменяющееся изображение, а только усредненную по времени интенсивность. Лазерный луч почти монохроматический (т. е. состоит из одной длины волны) и высококогерентный. Это идеальный источник света для наблюдения интерференционных эффектов.

Определение частоты

После 1802 г. измеренные Юнгом длины волн видимого света можно было соотнести с недостаточно точной скоростью света, доступной в то время, чтобы приблизительно рассчитать его частоту. Например, у зеленого света она равна около 6×10 14 Гц. Это на много порядков превышает частоту Для сравнения, человек может слышать звук с частотами до 2×10 4 Гц. Что именно колеблется с такой скоростью, оставалось загадкой еще в течение следующих 60 лет.

Интерференция в тонких пленках

Наблюдаемые эффекты не ограничиваются двойной щелевой геометрией, использовавшейся Томасом Юнгом. Когда происходит отражение и преломление лучей от двух поверхностей, разделенных расстоянием, сравнимым с длиной волны, возникает интерференция в тонких пленках. Роль пленки между поверхностями может играть вакуум, воздух, любые прозрачные жидкости или твердые тела. В видимом свете эффекты интерференции ограничены размерами порядка нескольких микрометров. Известным всем примером пленки является мыльный пузырь. Свет, отраженный от него, представляет собой суперпозицию двух волн — одна отражается от передней поверхности, а вторая - от задней. Они налагаются в пространстве и складываются друг с другом. В зависимости от толщины мыльной пленки, две волны могут взаимодействовать конструктивно или деструктивно. Полный расчет интерференционной картины показывает, что для света с одной длиной волны λ конструктивная интерференция наблюдается для пленки толщиной λ/4, 3λ/4, 5λ/4, и т. д., а деструктивная - для λ/2, λ, 3λ/2, ...

Формулы для расчета

Явление интерференции нашло множество применений, поэтому важно понимать основные уравнения, к нему относящиеся. Следующие формулы позволяют рассчитать различные величины, связанные с интерференцией, для двух наиболее распространенных ее случаев.

Расположение светлых полос в т. е. участков с конструктивной интерференцией, можно рассчитать с помощью выражения: y светл. =(λL/d)m, где λ - длина волны; m=1, 2, 3, ...; d - расстояние между щелями; L - расстояние до мишени.

Местонахождение темных полос, т. е. областей деструктивного взаимодействия, определяется формулой: y темн. =(λL/d)(m+1/2).

Для другой разновидности интерференции - в тонких пленках - наличие конструктивного или деструктивного наложения определяет фазовый сдвиг отраженных волн, который зависит от толщины пленки и показателя ее преломления. Первое уравнение описывает случай отсутствия такого смещения, а второе - сдвиг в половину длины волны:

Здесь λ - длина волны; m=1, 2, 3, ...; t - путь, пройденный в пленке; n - показатель преломления.

Наблюдение в природе

Когда солнце освещает мыльный пузырь, можно увидеть яркие цветные полосы, так как различные длины волн подвергаются деструктивной интерференции и удаляются из отражения. Оставшийся отраженный свет выглядит как дополняющий удаленные цвета. Например, если в результате деструктивной интерференции отсутствует красная составляющая, то отражение будет голубым. Тонкие пленки нефти на воде производят подобный эффект. В природе перья некоторых птиц, включая павлинов и колибри, и панцири некоторых жуков выглядят радужными, при этом меняя цвет при изменении угла обзора. Физика оптики здесь заключается в интерференции отраженных световых волн от тонких слоистых структур или массивов отражающих стержней. Аналогичным образом жемчуг и раковины имеют радужную оболочку, благодаря наложению отражений от нескольких слоев перламутра. Драгоценные камни, такие как опал, демонстрируют красивые интерференционные картины, обусловленные рассеянием света от регулярных структур, образованных микроскопическими сферическими частицами.

Применение

Существует множество технологических применений световых интерференционных явлений в повседневной жизни. На них основана физика оптики фотоаппаратов. Обычное просветляющее покрытие линз представляет собой тонкую пленку. Ее толщина и преломление лучей выбраны таким образом, чтобы производить деструктивную интерференцию отраженного видимого света. Более специализированные покрытия, состоящие из нескольких слоев тонких пленок, предназначены для пропускания излучения только в узком диапазоне длин волн и, следовательно, используются в качестве светофильтров. Многослойные покрытия используются также для повышения отражательной способности зеркал астрономических телескопов, а также оптических резонаторов лазеров. Интерферометрия - точные методы измерений, используемые для регистрации небольших изменений относительных расстояний - основана на наблюдении сдвигов темных и светлых полос, создаваемых отраженным светом. Например, измерение того, как изменится интерференционная картина, позволяет установить кривизну поверхностей оптических компонентов в долях оптической длины волны.

Если свет, исходящий от одного источника, разделить определенным образом, например, на два пучка, а потом наложить их друг на друга, то интенсивность в области суперпозиции пучков будет изменяться от одной точки к другой. При этом в одних точках достигается максимум интенсивности, который больше, чем сумма интенсивностей двух этих пучков, и минимума, где интенсивность равна нулю. Данное явление называют интерференцией света. Если накрадывающиеся пучки света являются строго монохроматическими, то интерференция возникает всегда. Это, конечно не может относится к реальным источникам света, так как они не бывают строго монохроматическими. Амплитуда и фаза естественного источника света подвержена непрерывным флуктуациям, причем они происходят очень быстро так, что человеческий глаз или примитивный физический детектор не могут зафиксировать эти изменения. В пучках света, которые исходят от разных источников, флуктуации абсолютно не зависимы, про такие пучки говорят, что они взаимно некогерентны. При наложении таких источников интерференции не наблюдается, полная интенсивность равняется сумме интенсивностей отдельных пучков света.

Методы получения интерферирующих пучков света

Выделяют два общих метода получения пучков света, которые могут интерферировать. Эти методы лежат в основе классификации устройств, которые используют в интерферометрии.

В первом из них пучок света делится при прохождении через отверстия, которые расположены близко друг от друга. Этот метод называют методом деления волнового фронта. Он применим только, если использовать малые источники света.

Первая экспериментальная установка для демонстрации интерференции света была сделана Юнгом. В его опыте свет от точечного монохроматического источника падал на два малых отверстия в непрозрачном экране, которые располагались недалеко друг от друга на одинаковых расстояниях от источника света. Данные отверстия в экране становились вторичными источниками света, световые пучки, исходящие от которых можно было считать когерентными. Пучки света от этих вторичных источников перекрываются, наблюдается интерференционная картина в области их перекрытия. Интерференционная картина состоит из совокупности светлых и темных полос, которые называют интерференционными полосами. Они находятся на равных расстояниях друг от друга и направлены под прямым углом к линии, которая соединяет вторичные источники света. Полосы интерференции можно наблюдать в любой плоскости области перекрытия расходящихся пучков от вторичных источников. Такие интерференционные полосы называют нелокализованными.

Во втором способе пучок света делят при помощи одной или нескольких поверхностях, которые частично отражают, и частично пропускают свет. Данный метод называют методом деления амплитуды. Он может использоваться для протяженных источников. Плюс его в том, что с его помощью получают большую интенсивность, чем метод деления фронта.

Картину интерференции, которую получают делением амплитуды, можно получить, если плоскопараллельную пластинку из прозрачного материала освещать светом от точечного источника квазимонохроматического света. При этом в любую точку, которая находится с той же стороны, что и источник света приходят два луча. Одни из них отразился от верхней поверхности пластины, другой отразился от ее нижней поверхности. Отраженные лучи интерферируют и составляют интерференционную картину. При этом полосы в плоскостях, которые параллельны пластинке, имеют вид колец, с осью, нормальной к пластине. Видность таких колец уменьшается при росте размера источника света. Если точка наблюдения находится в бесконечности, тогда наблюдение ведут глазом, который адаптирован на бесконечность или в фокальной плоскости объектива телескопа. Лучи, отраженные от верхней и нижней поверхностей пластинки параллельны. Полосы, возникающие в результате интерференции лучей, падающих на пленку под одинаковыми углами, носят названия полос равного наклона. (Подробнее об интерференции в плоскопараллельной пластине см. раздел «Интерференция в тонких пленках»)

Примеры решения задач

ПРИМЕР 1

Задание Каково положение второй светлой полосы в опыте Юнга, если расстояние между щелями равно b, расстояние от щелей до экрана l. Щели освещают монохроматическим светом с длиной воны равной .
Решение Изобразим ситуацию прохождения света от отверстий ( и ) до экрана в опыте Юнга (рис.1). Экран параллелен плоскости, в которой расположены отверстия.

Разность хода лучей найдем, опираясь на рис.1:

Условие максимума для интерферирующих лучей света (см. раздел «Интерференция света»):

По условию задачи нас интересует положение второй интерференционной полосы, следовательно: . Применяя выражения (1.1) и (1.2), получаем:

Выразим из формулы (1.3):

Ответ м

ПРИМЕР 2

Задание В опыте Юнга на пути одного из лучей, исходящих от вторичного источника разместили перпендикулярно данному лучу тонкую стеклянную пластину с показателем преломления n. При этом центральный максимум сместился в положение, которое до этого занимал максимум номер m. Какова толщина пластины, если длина волны свет равна ?
Решение Разность хода лучей при наличии пластины, учитывая, что луч падает на пластину по нормали, запишем как:

В каждой точке две распространяющиеся в пространстве волны дают геометрическую сумму своих колебаний. Этот принцип называется суперпозицией волн. Указанный закон соблюдается с невероятной точностью. Однако в редких случаях он может игнорироваться. Это касается ситуаций, при которых волны распространяются в сложных средах, когда их интенсивность (амплитуда) становится очень большой. Данный принцип означает, что на некоторое количество электромагнитных волн, распространяющихся в определенной среде, сама среда откликается совершенно конкретным образом - она реагирует только на одну волну, как будто других рядом нет. Математически это значит, что в любой точке выбранной среды напряженность и индукция электромагнитного поля будут равны векторной сумме магнитных индукций и напряженностей всех совокупных полей. Вследствие принципа суперпозиции электромагнитных волн возникают такие явления, как дифракция и интерференция света. Они интересны с физической точки зрения, кроме того, поражают своей красотой.

Что такое интерференция?

Рассматривать данное явление можно только с соблюдением специальных условий. Интерференция света - это образование полос ослабления и усиления, которые чередуются друг с другом. Одним из важных условий является наложение электромагнитных волн (пучков света) друг на друга, причем их количество должно быть от двух и более. Стоячая волна является частным случаем. Необходимо заметить, что интерференция - это сугубо волновой эффект, применимый не только к свету. В стоячей волне, которая и образуется благодаря наложению на отраженную или падающую волну, наблюдаются максимумы (пучности) и минимумы (узлы) интенсивности, которые чередуются друг с другом.

Основные условия

Интерференция волн обусловлена их когерентностью. Что означает этот термин? Когерентность - это согласованность волн по фазе. Если две волны, которые идут от разных источников, наложить друг на друга, то их фазы будут меняться беспорядочно. Световые волны являются следствием излучения атомов, поэтому каждая из них - это результат наложения огромного количества составляющих.

Минимумы и максимумы

Для появления «правильных» усилений и ослаблений суммарных волн в пространстве необходимо, чтобы складываемые составляющие в выбранной точке друг друга гасили. То есть длительное время электромагнитные волны должны были бы находиться в противофазе, чтобы разность фаз постоянно оставалась одинаковой. Максимум же появляется в момент нахождения составляющих волн в одной фазе, то есть когда они усиливаются. Интерференция света наблюдается при условии постоянной разности фаз в данной точке. И такие волны называются когерентными.

Естественные источники

Когда можно наблюдать такое явление, как интерференция света? Излучаемые электромагнитные волны от естественных источников некогерентны, потому что они беспорядочно создаются разными атомами, обычно совершенно несогласованными друг с другом. Каждая выпущенная атомом отдельная волна представляет собой отрезок синусоиды, абсолютно когерентный сам с собой. Таким образом, необходимо разделить на два и более пучков один поток света, который идет от источника, а затем наложить получившиеся друг на друга. В этом случае мы сможем наблюдать минимумы и максимумы такого явления, как интерференция света.

Наблюдение за наложением волн

Как уже говорилось выше, интерференция света - это очень широкое понятие, при котором результат сложения световых пучков по интенсивности не равен интенсивности отдельных пучков. В результате этого явления имеет место перераспределение энергии в пространстве - образуются те самые минимумы и максимумы. Именно поэтому интерференционная картина - это просто чередование темных и светлых полос. Если использовать белый свет, то полосы будут окрашены в самые разные цвета. Но когда в обычной жизни мы встречаем интерференцию света? Это происходит довольно часто. К ее проявлениям можно отнести масляные пятна на асфальте, мыльные пузыри с их радужными переливами, игру света на поверхности закаленного металла, рисунки на крылышках стрекозы. Это все интерференция света в тонких пленках. В действительности наблюдать этот эффект не так просто, как может показаться. Если горят две совершенно одинаковые лампы, то их интенсивности складываются. Но почему же нет эффекта интерференции? Ответ на этот вопрос заключается в отсутствии у такого наложения важнейшего условия - когерентности волн.

Бипризма Френеля

Для получения интерференционной картины возьмем источник, который является узкой освещенной щелью, установленной параллельно ребру самой бипризмы. Идущая от него волна будет раздваиваться благодаря преломлению в половинах бипризмы и доходить до экрана двумя различными путями, то есть иметь разность хода. На экране, в той его части, где и происходит перекрытие пучков света от половин бипризмы, появляются чередующиеся темные и светлые полосы. Разность хода ограничена по некоторым соображениям. В каждом акте излучения атом выпускает так называемый волновой цуг (системы электромагнитных волн), который распространяется в пространстве и времени, сохраняя свою синусоидальность. Длительность этого цуга ограничивается затуханием собственных колебаний частички (электрона) в атоме и столкновениям данного атома с другими. Если пропускать через бипризму белый свет, то можно увидеть цветную интерференцию, как это было и с тонкими пленками. Если же свет монохроматический (от дугового разряда в каком-либо газе), то интерференционная картинка будет представлять собой просто светлые и темные полосы. Это означает, что длины волн у разных цветов различны, то есть свет разного цвета и характеризуется разностью длин волн.

Получение наложенных волн

Идеальный источник света - это лазер (генератор квантов), который является по своей природе когерентным источником вынужденных излучений. Длина когерентного лазерного цуга может достигать тысяч километров. Именно благодаря генераторам квантов ученые создали целую область современной оптики, которую и назвали когерентной. Этот раздел физики является невероятно перспективным в плане технических и теоретических достижений.

Области применения эффекта

В широком смысле понятие «интерференция света» - это модуляция в пространстве потока энергии и его состояния излучения (поляризации) в области пересечения нескольких электромагнитных волн (двух и более). Но где используют такой эффект? Применение интерференции света возможно в самых различных областях технологий и промышленности. Например, это явление используют для того, чтобы осуществлять прецизионный контроль поверхностей обработанных изделий, а также механических и тепловых напряжений в деталях, измерять объемы различных объектов. Также интерференция света нашла применение в микроскопии, в спектроскопии инфракрасного и оптического излучения. Это явление лежит в основе современной трехмерной голографии, активной спектроскопии комбинационного рассеяния. В основном интерференцию, как видно из примеров, используют для высокоточных измерений и вычисления показателей преломления в разных средах.

ИНТЕРФЕРЕНЦИОННАЯ КАРТИНА

ИНТЕРФЕРЕНЦИОННАЯ КАРТИНА

Регулярное чередование областей повыш. и пониж. интенсивности света, получающееся в результате наложения когерентных световых пучков, т. е. в условиях постоянной (или регулярно меняющейся) разности фаз между ними (см. ИНТЕРФЕРЕНЦИЯ СВЕТА). Для сферич. макс. интенсивность наблюдается при разности фаз, равной чётному числу полуволн, а минимальная - при разности фаз, равной нечётному числу полуволн. (см. ПОЛОСЫ РАВНОЙ ТОЛЩИНЫ).

Физический энциклопедический словарь. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1983 .


Смотреть что такое "ИНТЕРФЕРЕНЦИОННАЯ КАРТИНА" в других словарях:

    интерференционная картина - Распределение интенсивности света, получающееся в результате интерференции, в месте ее наблюдения. [Сборник рекомендуемых терминов. Выпуск 79. Физическая оптика. Академия наук СССР. Комитет научно технической терминологии. 1970 г.] Тематики… …

    интерференционная картина - interferencinis vaizdas statusas T sritis fizika atitikmenys: angl. fringe pattern; interference figure; interference image vok. Interferenzbild, n rus. интерференционная картина, f pranc. image d’interférences, f; image interférentielle, f … Fizikos terminų žodynas

    дифракционная картина - Интерференционная картина, возникающая при интерференции света, дифрагировавшего на оптических неоднородностях. [Сборник рекомендуемых терминов. Выпуск 79. Физическая оптика. Академия наук СССР. Комитет научно технической терминологии. 1970 г.]… … Справочник технического переводчика

    - (от греч. hólos весь, полный и...графия) метод получения объёмного изображения объекта, основанный на интерференции волн. Идея Г. была впервые высказана Д. Габором (Великобритания, 1948), однако техническая реализация метода оказалась… …

    Измерительный прибор, в котором используется Интерференция волн. Существуют И. для звуковых и для электромагнитных волн: оптических (ультрафиолетовой, видимой и инфракрасной областей спектра) и радиоволн различной длины. Применяются И.… … Большая советская энциклопедия

    Интерференция света опыт Юнга Интерференция света перераспределение интенсивности света в результате наложения (суперпозиции) нескольких когерентных световых волн. Это явление сопровождается чередующимися в пространстве ма … Википедия

    Энциклопедия «Авиация»

    интерференционный метод исследования - Рис. 1. Принципиальная схема установки. интерференционный метод исследования — один из основных оптических методов исследования течений. Характерные особенности И. м. и.: а) использование в интерференционных приборах двух когерентных… … Энциклопедия «Авиация»

    Раздел физики, в котором рассматриваются все явления, связанные со светом, включая инфракрасное и ультрафиолетовое излучение (см. также ФОТОМЕТРИЯ; ЭЛЕКТРОМАГНИТНОЕ ИЗЛУЧЕНИЕ). ГЕОМЕТРИЧЕСКАЯ ОПТИКА Геометрическая оптика основывается на… … Энциклопедия Кольера

    Это статья об интерференции в физике. См. также Интерференция и Интерференция света Картина интерференции большого количества круговых когерентных волн, в зависимости от длины волны и расстояния между источниками Интерференция волн взаимное … Википедия