Используя схему горнера разделить многочлен на. Методика преподавания темы «Схема Горнера, теорема Безу и деление уголком»

При решении уравнений и неравенств нередко возникает необходимость разложить на множители многочлен, степень которого равна трем или выше. В этой статье мы рассмотрим, каким образом это сделать проще всего.

Как обычно, обратимся за помощью к теории.

Теорема Безу утверждает, что остаток от деления многочлена на двучлен равен .

Но для нас важна не сама теорема, а следствие из нее:

Если число является корнем многочлена , то многочлен делится без остатка на двучлен .

Перед нами стоит задача каким-то способом найти хотя бы один корень многочлена, потом разделить многочлен на , где - корень многочлена. В результате мы получаем многочлен, степень которого на единицу меньше, чем степень исходного. А потом при необходимости можно повторить процесс.

Эта задача распадается на две: как найти корень многочлена, и как разделить многочлен на двучлен .

Остановимся подробнее на этих моментах.

1. Как найти корень многочлена.

Сначала проверяем, являются ли числа 1 и -1 корнями многочлена.

Здесь нам помогут такие факты:

Если сумма всех коэффициентов многочлена равна нулю, то число является корнем многочлена.

Например, в многочлене сумма коэффициентов равна нулю: . Легко проверить, что является корнем многочлена.

Если сумма коэффициентов многочлена при четных степенях равна сумме коэффициентов при нечетных степенях, то число является корнем многочлена. Свободный член считается коэффициентом при четной степени, поскольку , а - четное число.

Например, в многочлене сумма коэффициентов при четных степенях : , и сумма коэффициентов при нечетных степенях : . Легко проверить, что является корнем многочлена.

Если ни 1, ни -1 не являются корнями многочлена, то двигаемся дальше.

Для приведенного многочлена степени (то есть многочлена, в котором старший коэффициент - коэффициент при - равен единице) справедлива формула Виета:

Где - корни многочлена .

Есть ещё формул Виета, касающихся остальных коэффициентов многочлена, но нас интересует именно эта.

Из этой формулы Виета следует, что если корни многочлена целочисленные, то они являются делителями его свободного члена, который также является целым числом.

Исходя из этого, нам надо разложить свободный член многочлена на множители, и последовательно, от меньшего к большему, проверять, какой из множителей является корнем многочлена.

Рассмотрим, например, многочлен

Делители свободного члена: ; ; ;

Сумма всех коэффициентов многочлена равна , следовательно, число 1 не является корнем многочлена.

Сумма коэффициентов при четных степенях :

Сумма коэффициентов при нечетных степенях :

Следовательно, число -1 также не является корнем многочлена.

Проверим, является ли число 2 корнем многочлена: , следовательно, число 2 является корнем многочлена. Значит, по теореме Безу, многочлен делится без остатка на двучлен .

2. Как разделить многочлен на двучлен.

Многочлен можно разделить на двучлен столбиком.

Разделим многочлен на двучлен столбиком:


Есть и другой способ деления многочлена на двучлен - схема Горнера.


Посмотрите это видео, чтобы понять, как делить многочлен на двучлен столбиком, и с помощью схемы Горнера.

Замечу, что если при делении столбиком какая-то степень неизвестного в исходном многочлене отсутствует, на её месте пишем 0 - так же, как при составлении таблицы для схемы Горнера.

Итак, если нам нужно разделить многочлен на двучлен и в результате деления мы получаем многочлен , то коэффициенты многочлена мы можем найти по схеме Горнера:


Мы также можем использовать схему Горнера для того, чтобы проверить, является ли данное число корнем многочлена: если число является корнем многочлена , то остаток от деления многочлена на равен нулю, то есть в последнем столбце второй строки схемы Горнера мы получаем 0.

Используя схему Горнера, мы "убиваем двух зайцев": одновременно проверяем, является ли число корнем многочлена и делим этот многочлен на двучлен .

Пример. Решить уравнение:

1. Выпишем делители свободного члена, и будем искать корни многочлена среди делителей свободного члена.

Делители числа 24:

2. Проверим, является ли число 1 корнем многочлена.

Сумма коэффициентов многочлена , следовательно, число 1 является корнем многочлена.

3. Разделим исходный многочлен на двучлен с помощью схемы Горнера.

А) Выпишем в первую строку таблицы коэффициенты исходного многочлена.

Так как член, содержащий отсутствует, в том столбце таблицы, в котором должен стоять коэффициент при пишем 0. Слева пишем найденный корень: число 1.

Б) Заполняем первую строку таблицы.

В последнем столбце, как и ожидалось, мы получили ноль, мы разделили исходный многочлен на двучлен без остатка. Коэффициенты многочлена, получившегося в результате деления изображены синим цветом во второй строке таблицы:

Легко проверить, что числа 1 и -1 не являются корнями многочлена

В) Продолжим таблицу. Проверим, является ли число 2 корнем многочлена :

Так степень многочлена, который получается в результате деления на единицу меньше степени исходного многочлена, следовательно и количество коэффициентов и количество столбцов на единицу меньше.

В последнем столбце мы получили -40 - число, не равное нулю, следовательно, многочлен делится на двучлен с остатком, и число 2 не является корнем многочлена.

В) Проверим, является ли число -2 корнем многочлена . Так как предыдущая попытка оказалась неудачной, чтобы не было путаницы с коэффициентами, я сотру строку, соответствующую этой попытке:


Отлично! В остатке мы получили ноль, следовательно, многочлен разделился на двучлен без остатка, следовательно, число -2 является корнем многочлена. Коэффициенты многочлена, который получается в результате деления многочлена на двучлен в таблице изображены зеленым цветом.

В результате деления мы получили квадратный трехчлен , корни которого легко находятся по теореме Виета:

Итак, корни исходного уравнения :

{}

Ответ: {}

Обычно многочлен представлен в виде:

$f(x)=\sum\limits_{k=0}^{n} a_k x^k$

f(x) = a 0 + a 1 x + a 2 x 2 + ... + a k x k

Где a k это действительные числа, представляющие коэффициенты многочлена и
x k это переменные многочлена.

Вышеупомянутый многочлен называют многочленом n -ой степени, то есть deg(f(x)) = n , где n представляет наивысшую степень переменной.

Схема Горнера для деления многочлена - это алгоритм упрощения вычисления значения многочлена f(x) при определённой величине x = x 0 методом деления многочлена на одночлены (многочлены 1 ой степени). Каждый одночлен включает в себя максимум один процесс умножения и один процесс сложения. Результат, полученный из одного одночлена, прибавляют к результату полученному от следующего одночлена и так далее в аккумулятивной манере. Такой процесс деления также называют синтетическим делением.

Чтобы объяснить вышесказанное, давайте перепишем многочлен в развёрнутой форме;

f(x 0) = a 0 + a 1 x 0 + a 2 x 0 2 + ... + a n x 0 n

Это также может быть записано как:

f(x 0) = a 0 + x 0 (a 1 + x 0 (a 2 + x 0 (a 3 + ... + (a n-1 + a n x 0)....)

Алгоритм, предложенный данной схемой, основан на нахождении значений одночленов образованных выше, начиная с тех которые заключены в больше скобок и двигаясь наружу, для нахождения значения одночленов во внешних скобках.

Алгоритм приводится в действие, следуя нижеизложенным шагам:

1. Дано k = n
2. Пусть b k = a k
3. Пусть b k - 1 = a k - 1 + b k x 0
4. Пусть k = k - 1
5. Если k ≥ 0 , то вернуться на шаг 3
иначе Конец

Этот алгоритм может быть также графически визуализирован, принимая во внимание данный многочлен 5 ой степени:

f(x) = a 0 + a 1 x + a 2 x 2 + a 3 x 3 + a 4 x 4 + a 5 x 5

значение которого находится как x = x 0 , путём перестановки его следующим образом:

f(x 0) = a 0 + x 0 (a 1 + x 0 (a 2 + x 0 (a 3 + x 0 (a 4 + a 5 x 0))))

Другим способом представить результаты используя этот алгоритм можно в виде данной ниже таблицы:

Таким образом, f(2) = 83.

Почему нам это необходимо делать?

Обычно, находя значения многочлена при определённом значении переменной, мы привыкли подставлять это значение в многочлен и производить вычисления. Мы также можем разработать копьютерную программу для математического вычисления, которая является необходимостью, когда мы имеем дело со сложными многочленами высоких степеней.

Метод, с помощью которого компьютер обрабатывает проблему, зависит, в основном, от того как Вы, как программист, описываете это компьютеру. Вы можете разработать Вашу программу для нахождения значения многочлена методом прямой подстановки значения переменной или использовать синтетическое деление, данное в схеме Горнера. Единственное отличие между этими двумя подходами это скорость, с которой компьютер будет находить решение том или ином случае.

Преимущество схемы Горнера в том, что оно снижает количество операций умножения. Принимая во внимание то, что время обработки каждого процесса умножения от 5 до 20 раз больше, чем время обработки процесса сложения, Вы можете утверждать, что построение программы для нахождения значения многочлена по схеме Горнера существенно уменьшит затрачиваемое компьютером время вычисления.

4x 3 - 19x 2 + 19x + 6 = 0

Для начала нужно методом подбора найти один корень. Обычно он является делителем свободного члена. В данном случае делителями числа 6 являются ±1, ±2, ±3, ±6.

1: 4 - 19 + 19 + 6 = 10 ⇒ число 1

-1: -4 - 19 - 19 + 6 = -36 ⇒ число -1 не является корнем многочлена

2: 4 ∙ 8 - 19 ∙ 4 + 19 ∙ 2 + 6 = 0 ⇒ число 2 является корнем многочлена

Мы нашли 1 из корней многочлена. Корнем многочлена является 2, а значит исходный многочлен должен делиться на x - 2 . Для того, чтобы выполнить деление многочленов, воспользуемся схемой Горнера:

4 -19 19 6
2

В верхней строке выставляются коэффициенты исходного многочлена. В первой ячейке второй строки ставится найденный нами корень 2. Во второй строке пишутся коэффициенты многочлена, который получится в результате деления. Они считаются так:

4 -19 19 6
2 4
Во вторую ячейку второй строки запишем число 1, просто перенеся его из соответствующей ячейки первой строки.
4 -19 19 6
2 4 -11
2 ∙ 4 - 19 = -11
4 -19 19 6
2 4 -11 -3
2 ∙ (-11) + 19 = -3
4 -19 19 6
2 4 -11 -3 0
2 ∙ (-3) + 6 = 0

Последнее число - это остаток от деления. Если он равен 0, значит мы все верно посчитали.

Таким образом мы исходный многочлен разложили на множители:

4x 3 - 19x 2 + 19x + 6 = (x - 2)(4x 2 - 11x - 3)

И теперь, всего лишь, осталось найти корни квадратного уравнения

4x 2 - 11x - 3 = 0
D = b 2 - 4ac = (-11) 2 - 4 ∙ 4 ∙ (-3) = 169
D > 0 ⇒ уравнение имеет 2 корня

Мы нашли все корни уравнения.

Многочлен вида
a n x n + a n-1 x n-1 + a n-2 x n-2 + ... + a 1 x + a 0
можно разложить на множители по схеме Горнера, если известен хотя бы 1 его корень.

Разберем деление по схеме Горнера на примере:

2x 4 + 9x 3 - 10x 2 - 27x - 10

Для начала нужно методом подбора найти один корень. Обычно он является делителем свободного члена. В данном случае делителями числа -10 являются ±1, ±2, ±5, ±10. Начнем их подставлять по-очереди:

1: 2 + 9 - 10 - 27 - 10 = -36 ⇒ число 1

-1: 2 - 9 - 10 + 27 - 10 = 0 ⇒ число -1 является корнем многочлена

Мы нашли 1 из корней многочлена. Корнем многочлена является -1, а значит исходный многочлен должен делиться на x + 1 . Для того, чтобы выполнить деление многочленов, воспользуемся схемой Горнера:

2 9 -10 -27 -10
-1

В верхней строке выставляются коэффициенты исходного многочлена. В первой ячейке второй строки ставится найденный нами корень -1. Во второй строке пишутся коэффициенты многочлена, который получится в результате деления. Они считаются так:

2 9 -10 -27 -10
-1 2
Во вторую ячейку второй строки запишем число 2, просто перенеся его из соответствующей ячейки первой строки.
2 9 -10 -27 -10
-1 2 7
-1 ∙ 2 + 9 = 7
2 9 -10 -27 -10
-1 2 7 -17
-1 ∙ 7 - 10 = -17
2 9 -10 -27 -10
-1 2 7 -17 -10
-1 ∙ (-17) - 27 = -10
2 9 -10 -27 -10
-1 2 7 -17 -10 0
-1 ∙ (-10) - 10 = 0

Последнее число - это остаток от деления. Если он равен 0, значит мы все верно посчитали.

2x 4 + 9x 3 - 10x 2 - 27x - 10 = (x + 1)(2x 3 + 7x 2 - 17x - 10)

Но это еще не конец. Можно попробовать разложить таким же способом многочлен 2x 3 + 7x 2 - 17x - 10.

Опять ищем корень среди делителей свободного члена. Как мы уже выяснили, делителями числа -10 являются ±1, ±2, ±5, ±10.

1: 2 + 7 - 17 - 10 = -18 ⇒ число 1 не является корнем многочлена

-1: -2 + 7 + 17 - 10 = 12 ⇒ число -1 не является корнем многочлена

2: 2 ∙ 8 + 7 ∙ 4 - 17 ∙ 2 - 10 = 0 ⇒ число 2 является корнем многочлена

Напишем найденный корень в нашу схему Горнера и начнем заполнять пустые ячейки:

2 9 -10 -27 -10
-1 2 7 -17 -10 0
2 2
Во вторую ячейку третьей строки запишем число 2, просто перенеся его из соответствующей ячейки второй строки.
2 9 -10 -27 -10
-1 2 7 -17 -10 0
2 2 11
2 ∙ 2 + 7 = 11
2 9 -10 -27 -10
-1 2 7 -17 -10 0
2 2 11 5
2 ∙ 11 - 17 = 5
2 9 -10 -27 -10
-1 2 7 -17 -10 0
2 2 11 5 0
2 ∙ 5 - 10 = 0

Таким образом мы исходный многочлен разложили на множители:

2x 4 + 9x 3 - 10x 2 - 27x - 10 = (x + 1)(x - 2)(2x 2 + 11x + 5)

Многочлен 2x 2 + 11x + 5 тоже можно разложить на множители. Для этого можно решить квадратное уравнение через дискриминант , а можно поискать корень среди делителей числа 5. Так или иначе, мы придем к выводу, что корнем этого многочлена является число -5

2 9 -10 -27 -10
-1 2 7 -17 -10 0
2 2 11 5 0
-5 2
Во вторую ячейку четвертой строки запишем число 2, просто перенеся его из соответствующей ячейки третьей строки.
2 9 -10 -27 -10
-1 2 7 -17 -10 0
2 2 11 5 0
-5 2 1
-5 ∙ 2 + 11 = 1
2 9 -10 -27 -10
-1 2 7 -17 -10 0
2 2 11 5 0
-5 2 1 0
-5 ∙ 1 + 5 = 0

Таким образом мы исходный многочлен разложили на линейные множители.

Слайд 3

Горнер Вильямc Джордж (1786-22.9.1837)-английский математик. Родился в Бристоле. Учился и работал там же, затем в школах Бата. Основные труды по алгебре. В 1819г. опубликовал способ приближенного вычисления вещественных корней многочлена, который называется теперь способом Руффини-Горнера (этот способ был известен китайцам еще в XIII в.) Именем Горнера названа схема деления многочлена на двучлен х-а.

Слайд 4

СХЕМА ГОРНЕРА

Способ деления многочлена n-й степени на линейный двучленх - а, основанный на том, что коэффициенты неполного частного и остатокr связаны с коэффициентами делимого многочлена и с а формулами:

Слайд 5

Вычисления по схеме Горнера располагают в таблицу:

Пример 1. Разделить Неполное частное равно х3-х2+3х - 13 и остаток равен 42=f(-3).

Слайд 6

Основным преимуществом этого метода является компактность записи и возможность быстрого деления многочлена на двучлен. По сути, схема Горнера является другой формой записи метода группировки, хотя, в отличие от последнего, является совершенно ненаглядной. Ответ (разложение на множители) тут получается сам собой, и мы не видим самого процесса его получения. Мы не будем заниматься строгим обоснованием схемы Горнера, а лишь покажем, как она работает.

Слайд 7

Пример2.

Докажем, что многочлен Р(х)=х4-6х3+7х-392 делится на х-7,и найдем частное от деления. Решение. Используя схему Горнера, найдем Р(7): Отсюда получаем Р(7)=0, т.е. остаток при делении многочлена на х-7 равен нулю и, значит, многочлен Р(х) кратен (х-7).При этом числа во второй строке таблицы являются коэффициентами частного от деления Р(х) на (х-7), поэтому Р(х)=(х-7)(х3+х2+7х+56).

Слайд 8

Разложить на множители многочлен x3 – 5x2 – 2x + 16.

Данный многочлен имеет целые коэффициенты. Если целое число является корнем этого многочлена, то оно является делителем числа 16. Таким образом, если у данного многочлена есть целые корни, то это могут быть только числа ±1; ±2; ±4; ±8; ±16. Непосредственной проверкой убеждаемся, что число 2 является корнем этого многочлена, то есть x3 – 5x2 – 2x + 16 = (x – 2)Q(x), где Q(x) − многочлен второй степени

Слайд 9

Полученные числа 1, −3, −8 являются коэффициентами многочлена, который получается при делении исходного многочлена на x – 2. Значит, результат деления: 1 · x2 + (–3)x + (–8) = x2 – 3x – 8. Степень многочлена, полученного в результате деления, всегда на 1 меньше, чем степень исходного. Итак: x3 – 5x2 – 2x + 16 = (x – 2)(x2 – 3x – 8).