Единственное решение имеет однородная система линейных уравнений. Системы линейных однородных уравнений

Однородная система линейных уравнений AX = 0 всегда совместна. Она имеет нетривиальные (ненулевые) решения, если r = rank A < n .

Для однородных систем базисные переменные (коэффициенты при которых образуют базисный минор) выражаются через свободные переменные соотношениями вида:

Тогда n - r линейно независимыми вектор-решениями будут:

а любое другое решение является их линейной комбинацией. Вектор-решения образуют нормированную фундаментальную систему.

В линейном пространстве множество решений однородной системы линейных уравнений образует подпространство размерности n - r ; - базис этого подпространства.

Система m линейных уравнений с n неизвестными (или, линейная система

Здесь x 1 , x 2 , …, x n a 11 , a 12 , …, a mn - коэффициенты системы - иb 1 , b 2 , … b m a ij i ) и неизвестного (j

Система (1) называется однородной b 1 = b 2 = … = b m = 0), иначе -неоднородной .

Система (1) называется квадратной , если число m уравнений равно числу n неизвестных.

Решение системы (1) - совокупность n чисел c 1 , c 2 , …, c n , таких что подстановка каждого c i вместо x i в систему (1) обращает все её уравнения в тождества.

Система (1) называется совместной несовместной

Решения c 1 (1) , c 2 (1) , …, c n (1) и c 1 (2) , c 2 (2) , …, c n различными

c 1 (1) = c 1 (2) , c 2 (1) = c 2 (2) , …, c n (1) = c n (2) .

определённой неопределённой . Если уравнений больше, чем неизвестных, она называется переопределённой .

Решение систем линейных уравнений

Решение матричных уравнений ~ Метод Гаусса

Способы решения систем линейных уравнений делятся на две группы:

1. точные методы , представляющие собой конечные алгоритмы для вычисления корней системы (решение систем с помощью обратной матрицы, правило Крамера, метод Гаусса и др.),

2. итерационные методы , позволяющие получить решение системы с заданной точностью путем сходящихся итерационных процессов (метод итерации, метод Зейделя и др.).

Вследствие неизбежных округлений результаты даже точных методов являются приближенными. При использовании итерационных методов, сверх того, добавляется погрешность метода.

Эффективное применение итерационных методов существенно зависит от удачного выбора начального приближения и быстроты сходимости процесса.

Решение матричных уравнений

Рассмотрим систему n линейных алгебраических уравнений относительно n неизвестных х 1 , х 2 , …, х n :

. (15)

Матрица А , столбцами которой являются коэффициенты при соответствующих неизвестных, а строками - коэффициенты при неизвестных в соответствующем уравнении, называется матрицей системы ; матрица-столбец b , элементами которой являются правые части уравнений системы, называется матрицей правой части или просто правой частью системы . Матрица-столбец х , элементы которой - искомые неизвестные, называется решением системы .

Если матрица А - неособенная, то есть det A н е равен 0 то система (13), или эквивалентное ей матричное уравнение (14), имеет единственное решение.

В самом деле, при условии det A не равно 0 существует обратная матрица А -1 . Умножая обе части уравнения (14) на матрицу А -1 получим:

(16)

Формула (16) дает решение уравнения (14) и оно единственно.

Системы линейных уравнений удобно решать с помощью функции lsolve .

lsolve(А, b )

Возвращается вектор решения x такой, что Ах = b.

Аргументы:

А - квадратная, не сингулярная матрица.

b - вектор, имеющий столько же рядов, сколько рядов в матрице А .

На Рисунке 8 показано решение системы трех линейных уравнений относительно трех неизвестных.

Метод Гаусса

Метод Гаусса, его еще называют методом Гауссовых исключений, состоит в том, что систему (13) приводят последовательным исключением неизвестных к эквивалентной системе с треугольной матрицей:

В матричной записи это означает, что сначала (прямой ход метода Гаусса) элементарными операциями над строками приводят расширенную матрицу системы к ступенчатому виду:

а затем (обратный ход метода Гаусса) эту ступенчатую матрицу преобразуют так, чтобы в первых n столбцах получилась единичная матрица:

.

Последний, (n + 1) столбец этой матрицы содержит решение системы (13).

В Mathcad прямой и обратный ходы метода Гаусса выполняет функция rref (A ).

На Рисунке 9 показано решение системы линейных уравнений методом Гаусса, в котором используются следующие функции:

rref(A )

Возвращается ступенчатая форма матрицы А .

augment(A , В )

Возвращается массив, сформированный расположением A иВ бок о бок. Массивы A иВ должны иметь одинаковое число строк.

submatrix(A, ir, jr, ic, jc )

Возвращается субматрица, состоящая из всех элементов с ir по jr и столбцах с ic по jc. Удостоверьтесь, что ir jr и

ic jc, иначе порядок строк и (или) столбцов будет обращен.

Рисунок 9.

Описание метода

Для системы n линейных уравнений с n неизвестными (над произвольным полем)

с определителем матрицы системы Δ, отличным от нуля, решение записывается в виде

(i-ый столбец матрицы системы заменяется столбцом свободных членов).
В другой форме правило Крамера формулируется так: для любых коэффициентов c1, c2, …, cn справедливо равенство:

В этой форме формула Крамера справедлива без предположения, что Δ отлично от нуля, не нужно даже, чтобы коэффициенты системы были бы элементами целостного кольца(определитель системы может быть даже делителем нуля в кольце коэффициентов). Можно также считать, что либо наборы b1,b2,...,bn и x1,x2,...,xn, либо набор c1,c2,...,cn состоят не из элементов кольца коэффициентов системы, а какого-нибудь модуля над этим кольцом. В этом виде формула Крамера используется, например, при доказательстве формулы дляопределителя Грама и Леммы Накаямы.

35) Теорема Кронекера-Капелли
Для того чтобы система m неоднородных линейных уравнений с n неизвестными была совместной, необходимо и достаточно, чтобы Доказательство необходимости. Пусть система (1.13) совместна, то есть существуют такие числа х 1 =α 1 , х 2 =α 2 , …, х n =α n , что (1.15) Вычтем из последнего столбца расширенной матрицы ее первый столбец, умноженный на α 1 , второй – на α 2 , …, n-ый – умноженный на α n , то есть из последнего столбца матрицы (1.14) следует вычесть левые части равенств (1.15). Тогда получим матрицу ранг которой в результате элементарных преобразований не изменится и . Но очевидно, и, значит, Доказательство достаточности. Пусть и пусть для определенности не равный нулю минор порядка r расположен в левом верхнем углу матрицы: Это означает, что остальные строки матрицы могут быть получены как линейные комбинации первых r строк, то есть m-r строк матрицы можно представить в виде сумм первых r строк, умноженных на некоторые числа. Но тогда первые r уравнений системы (1.13) самостоятельны, а остальные являются их следствиями, то есть решение системы первых r уравнений автоматически является решением остальных уравнений. Возможны два случая. 1. r=n. Тогда система, состоящая из первых r уравнений, имеет одинаковое число уравнений и неизвестных и совместна, причем решение ее единственно. 2. r (1.16) «Свободным» неизвестным x r +1 , x r +2 , …, x n можно придать какие угодно значения. Тогда соответствующие значения получают неизвестные x 1 , x 2 , …, x r . Система (1.13) и в этом случае совместная, но неопределенная. Замечание. Отличный от нуля минор порядка r, где rх 1 , х 2 , …, х r так же называют базисными, остальные – свободными. Систему (1.16) называют укороченной. Если свободные неизвестные обозначить х r +1 =c 1 , х r +2 =c 2 , …, х n =c n - r , то базисные неизвестные будут от них зависеть, то есть решение системы m уравнений с n неизвестными будет иметь вид X = (x 1 (c 1 , …, c n - r ), x 2 (c 1 , …, c n - r ), …, x r (c 1 , …, c n - r ), c 1 , c 2 , …, c n - r ) T , где значок Т означает транспонирование. Такое решение системы называется общим.

36)ус-е определенности, неопределенности
Система m линейных уравнений с n неизвестными (или, линейная система ) в линейной алгебре - это система уравнений вида

Здесь x 1 , x 2 , …, x n - неизвестные, которые надо определить. a 11 , a 12 , …, a mn - коэффициенты системы - и b 1 , b 2 , … b m - свободные члены - предполагаются известными. Индексы коэффициентов (a ij ) системы обозначают номера уравнения (i ) и неизвестного (j ), при котором стоит этот коэффициент, соответственно .

Система (1) называется однородной , если все её свободные члены равны нулю (b 1 = b 2 = … = b m = 0), иначе - неоднородной .

Система (1) называется совместной , если она имеет хотя бы одно решение, и несовместной , если у неё нет ни одного решения.

Совместная система вида (1) может иметь одно или более решений.

Решения c 1 (1) , c 2 (1) , …, c n (1) и c 1 (2) , c 2 (2) , …, c n (2) совместной системы вида (1) называются различными , если нарушается хотя бы одно из равенств:

c 1 (1) = c 1 (2) , c 2 (1) = c 2 (2) , …, c n (1) = c n (2) .

Совместная система вида (1) называется определённой , если она имеет единственное решение; если же у неё есть хотя бы два различных решения, то она называется неопределённой

37)Решение систем линейных уравнений методом Гаусса

Пусть исходная система выглядит следующим образом

Матрица A называется основной матрицей системы, b - столбцом свободных членов.

Тогда согласно свойству элементарных преобразований над строками основную матрицу этой системы можно привести к ступенчатому виду(эти же преобразования нужно применять к столбцу свободных членов):

Тогда переменные называются главными переменными . Все остальные называются свободными .

[править]Условие совместности

Упомянутое выше условие для всех может быть сформулировано в качестве необходимого и достаточного условия совместности:

Напомним, что рангом совместной системы называется ранг её основной матрицы (либо расширенной, так как они равны).

Алгоритм

Описание

Алгоритм решения СЛАУ методом Гаусса подразделяется на два этапа.

§ На первом этапе осуществляется так называемый прямой ход, когда путём элементарных преобразований над строками систему приводят к ступенчатой или треугольной форме, либо устанавливают, что система несовместна. А именно, среди элементов первого столбца матрицы выбирают ненулевой, перемещают его на крайнее верхнее положение перестановкой строк и вычитают получившуюся после перестановки первую строку из остальных строк, домножив её на величину, равную отношению первого элемента каждой из этих строк к первому элементу первой строки, обнуляя тем самым столбец под ним. После того, как указанные преобразования были совершены, первую строку и первый столбец мысленно вычёркивают и продолжают пока не останется матрица нулевого размера. Если на какой-то из итераций среди элементов первого столбца не нашёлся ненулевой, то переходят к следующему столбцу и проделывают аналогичную операцию.

§ На втором этапе осуществляется так называемый обратный ход, суть которого заключается в том, чтобы выразить все получившиеся базисные переменные через небазисные и построить фундаментальную систему решений, либо, если все переменные являются базисными, то выразить в численном виде единственное решение системы линейных уравнений. Эта процедура начинается с последнего уравнения, из которого выражают соответствующую базисную переменную (а она там всего одна) и подставляют в предыдущие уравнения, и так далее, поднимаясь по «ступенькам» наверх. Каждой строчке соответствует ровно одна базисная переменная, поэтому на каждом шаге, кроме последнего (самого верхнего), ситуация в точности повторяет случай последней строки.

Метод Гаусса требует порядка O (n 3) действий.

Этот метод опирается на:

38)Теорема Кронекера-Капелли.
Система совместна тогда и только тогда, когда ранг её основной матрицы равен рангу её расширенной матрицы.

Рассмотрим однородную систему m линейных уравнений с n переменными:

(15)

Система однородных линейных уравнений всегда совместна, т.к. она всегда имеет нулевое (тривиальное) решение (0,0,…,0).

Если в системе (15) m=n и , то система имеет только нулевое решение, что следует из теоремы и формул Крамера.

Теорема 1 . Однородная система (15) имеет нетривиальное решение тогда и только тогда, когда ранг ее матрицы меньше числа переменных,т.е. r (A )< n .

Доказательство . Существование нетривиального решения системы (15) эквивалентно линейной зависимости столбцов матрицы системы (т.е. существуют такие числа х 1 , x 2 ,…,x n , не все равные нулю, что справедливы равенства (15)).

По теореме о базисном миноре столбцы матрицы линейно зависимы , когда не все столбцы этой матрицы являются базисными, т.е. , когда порядок r базисного минора матрицы меньше числа n ее столбцов. Ч.т.д.

Следствие . Квадратная однородная система имеет нетривиальные решения , когда |А|=0.

Теорема 2 . Если столбцы х (1) ,х (2) ,…,х (s) решения однородной системы АХ=0, то любая их линейная комбинация так же является решением этой системы.

Доказательство . Рассмотрим любую комбинацию решений:

Тогда АХ=А()===0. ч.т.д.

Следствие 1. Если однородная система имеет нетривиальное решение, то она имеет бесконечно много решений.

Т.о. необходимо найти такие решения х (1) ,х (2) ,…,х (s) системы Ах=0, чтобы любое другое решение этой системы представлялось в виде их линейной комбинации и притом единственным образом.

Определение. Система k=n-r (n –количество неизвестных в системе, r=rg A) линейно независимых решений х (1) ,х (2) ,…,х (k) системы Ах=0 называется фундаментальной системой решений этой системы.

Теорема 3 . Пусть дана однородная система Ах=0 с n неизвестными и r=rg A. Тогда существует набор из k=n-r решений х (1) ,х (2) ,…,х (k) этой системы, образующих фундаментальную систему решений.

Доказательство . Не ограничивая общности, можно считать, что базисный минор матрицы А расположен в верхнем левом углу. Тогда, по теореме о базисном миноре, остальные строки матрицы А являются линейными комбинациями базисных строк. Это означает, что если значения х 1 ,х 2 ,…,x n удовлетворяют первым r уравнениям т.е. уравнениям, соответствующим строкам базисного минора), то они удовлетворяют и другим уравнениям. Следовательно, множество решений системы не изменится, если отбросить все уравнения начиная с (r+1)-го. Получим систему:

Перенесем свободные неизвестные х r +1 ,х r +2 ,…,x n в правую часть, а базисные х 1 ,х 2 ,…,x r оставим в левой:

(16)

Т.к. в этом случае все b i =0, то вместо формул

c j =(M j (b i)-c r +1 M j (a i , r +1)-…-c n M j (a in)) j=1,2,…,r ((13), получим:

c j =-(c r +1 M j (a i , r +1)-…-c n M j (a in)) j=1,2,…,r (13)

Если задать свободным неизвестным х r +1 ,х r +2 ,…,x n произвольные значения, то относительно базисных неизвестных получим квадратную СЛАУ с невырожденной матрицей, у которой существует единственное решение. Т.о., любое решение однородной СЛАУ однозначно определяется значениями свободных неизвестных х r +1 ,х r +2 ,…,x n . Рассмотрим следующие k=n-r серий значений свободных неизвестных:

1, =0, ….,=0,

1, =0, ….,=0, (17)

………………………………………………

1, =0, ….,=0,

(Номер серии указан верхним индексом в скобках, а серии значений выписаны в виде столбцов. В каждой серии =1, еслиi=j и =0, еслиij.

i-й серии значений свободных неизвестных однозначно соответствуют значения ,,…,базисных неизвестных. Значения свободных и базисных неизвестных в совокупности дают решения системы (17).

Покажем, что столбцы е i =,i=1,2,…,k (18)

образуют фундаментальную систему решений.

Т.к. эти столбцы по построению являются решениями однородной системы Ах=0 и их количество равно k, то остается доказать линейную независимость решений (16). Пусть есть линейная комбинация решенийe 1 , e 2 ,…, e k (х (1) , х (2) ,…,х (k)), равная нулевому столбцу:

1 e 1 +  2 e 2 +…+  k e k ( 1 х (1) + 2 х (2) +…+ k х (k) =0)

Тогда левая часть этого равенства является столбцом, компоненты которого с номерами r+1,r+2,…,n равны нулю. Но (r+1)-я компоненты равна  1 1+ 2 0+…+ k 0= 1 . Аналогично, (r+2)-я компонента равна  2 ,…, k-я компонента равна  k . Поэтому  1 =  2 = …= k =0, что и означает линейную независимость решений e 1 , e 2 ,…, e k (х (1) , х (2) ,…,х (k)).Ч.т.д.

Построенная фундаментальная система решений (18) называется нормальной . В силу формулы (13) она имеет следующий вид:

(20)

Следствие 2 . Пусть e 1 , e 2 ,…, e k -нормальная фундаментальная система решений однородной системы, тогда множество всех решений можно описать формулой:

х=с 1 e 1 +с 2 e 2 +…+с k e k (21)

где с 1 ,с 2 ,…,с k – принимают произвольные значения.

Доказательство . По теореме 2 столбец (19) является решением однородной системы Ах=0. Остается доказать, что любое решение этой системы можно представить в виде (17). Рассмотрим столбецх =у r +1 e 1 +…+y n e k . Этот столбец совпадает со столбцом у по элементам с номерами r+1,…,n и является решением (16). Поэтому столбцы х и у совпадают, т.к. решения системы (16) определяются однозначно набором значений ее свободных неизвестных x r +1 ,…,x n , а у столбцов у и х эти наборы совпадают. Следовательно, у =х = у r +1 e 1 +…+y n e k , т.е. решение у является линейной комбинацией столбцов e 1 ,…,y n нормальной ФСР. Ч.т.д.

Доказанное утверждение справедливо не только для нормальной ФСР, но и для произвольной ФСР однородной СЛАУ.

Х= c 1 Х 1 + c 2 Х 2 +…+с n - r Х n - r - общее решение системы линейных однородных уравнений

Где Х 1 ,Х 2 ,…,Х n - r – любая фундаментальная система решений,

c 1 ,c 2 ,…,с n - r – произвольные числа.

Пример . (с. 78)

Установим связь между решениями неоднородной СЛАУ (1) и соответствующей ей однородной СЛАУ(15)

Теорема 4 . Сумма любого решения неоднородной системы (1) и соответствующей ей однородной системы (15) является решением системы (1).

Доказательство . Если c 1 ,…,c n – решение системы (1), а d 1 ,…,d n - решение системы (15), то подставив в любое (например, в i-е) уравнение системы (1) на место неизвестных числа c 1 +d 1 ,…,c n +d n , получим:

B i +0=b i ч.т.д.

Теорема 5 . Разность двух произвольных решений неоднородной системы (1) является решением однородной системы (15).

Доказательство . Если c 1 ,…,c n и c 1 ,…,c n – решения системы (1), то подставив в любое (например, в i-е) уравнение системы (1) на место неизвестных числа c 1 -с 1 ,…,c n -с n , получим:

B i -b i =0 ч.т.д.

Из доказанных теорем следует, что общее решение системы m линейных однородных уравнений с n переменными равно сумме общего решения соответствующей ей системы однородных линейных уравнений (15) и произвольного числа частного решения этой системы (15).

Х неод. общ. одн. част. неодн. (22)

В качестве частного решения неоднородной системы естественно взять то его решение, которое получается, если в формулах c j =(M j (b i)-c r +1 M j (a i , r +1)-…-c n M j (a in)) j=1,2,…,r ((13) положить равными нулю все числа c r +1 ,…,c n ,т.е.

Х 0 =(,…,,0,0,…,0) (23)

Складывая это частное решение с общим решением Х= c 1 Х 1 + c 2 Х 2 +…+с n - r Х n - r соответствующей однородной системы, получаем:

Х неод. 0 1 Х 1 2 Х 2 +…+С n - r Х n - r (24)

Рассмотрим систему двух уравнений с двумя переменными:

в которой хотя бы один из коэф. a ij 0.

Для решения исключим х 2 , умножив первое уравнение на а 22 , а второе – на (-а 12) и сложив их: Исключим х 1 , умножив первое уравнение на (-а 21), а второе – на а 11 и сложив их: Выражение в скобках – определитель

Обозначив ,, тогда система примет вид:, т.о., если, то система имеет единственное решение:,.

Если Δ=0, а (или), то система несовместна, т.к. приводится к видуЕсли Δ=Δ 1 =Δ 2 =0, то система неопределенная, т.к. приводится к виду

Однородная система всегда совместна и имеет тривиальное решение
. Для существования нетривиального решения необходимо, чтобы ранг матрицыбыл меньше числа неизвестных:

.

Фундаментальной системой решений однородной системы
называют систему решений в виде векторов-столбцов
, которые соответствуют каноническому базису, т.е. базису, в котором произвольные постоянные
поочередно полагаются равными единице, тогда как остальные приравниваются нулю.

Тогда общее решение однородной системы имеет вид:

где
- произвольные постоянные. Другими словами, общее решение есть линейная комбинация фундаментальной системы решений.

Таким образом, базисные решения могут быть получены из общего решения, если свободным неизвестным поочередно придавать значение единицы, полагая все остальные равные нулю.

Пример . Найдем решение системы

Примем , тогда получим решение в виде:

Построим теперь фундаментальную систему решений:

.

Общее решение запишется в виде:

Решения системы однородных линейных уравнений имеют свойства:

Другими словами, любая линейная комбинация решений однородной системы есть опять решение.

Решение систем линейных уравнений методом Гаусса

Решение систем линейных уравнений интересует математиков несколько столетий. Первые результаты были получены в XVIII веке. В 1750 г. Г.Крамер (1704 –1752) опубликовал свои труды по детерминантам квадратных матриц и предложил алгоритм нахождения обратной матрицы. В 1809 г. Гаусс изложил новый метод решения, известный как метод исключения.

Метод Гаусса, или метод последовательного исключения неизвестных, заключается в том, что с помощью элементарных преобразований система уравнений приводится к равносильной системе ступенчатого (или треугольного) вида. Такие системы позволяют последовательно находить все неизвестные в определенном порядке.

Предположим, что в системе (1)
(что всегда возможно).

(1)

Умножая поочередно первое уравнение на так называемые подходящие числа

и складывая результат умножения с соответствующими уравнениями системы, мы получим эквивалентную систему, в которой во всех уравнениях, кроме первого, будет отсутствовать неизвестная х 1

(2)

Умножим теперь второе уравнение системы (2) на подходящие числа, полагая, что

,

и складывая его с нижестоящими, исключим переменную из всех уравнений, начиная с третьего.

Продолжая этот процесс, после
шага мы получим:

(3)

Если хотя бы одно из чисел
не равно нулю, то соответствующее равенство противоречиво и система (1) несовместна. Обратно, для любой совместной системы числа
равны нулю. Число- это ни что иное, как ранг матрицы системы (1).

Переход от системы (1) к (3) называется прямым ходом метода Гаусса, а нахождение неизвестных из (3) – обратным ходом .

Замечание : Преобразования удобнее производить не с самими уравнениями, а с расширенной матрицей системы (1).

Пример . Найдем решение системы

.

Запишем расширенную матрицу системы:

.

Прибавим к строкам 2,3,4 первую, умноженную на (-2), (-3), (-2) соответственно:

.

Поменяем строки 2 и 3 местами, затем в получившейся матрице добавим к строке 4 строку 2, умноженную на :

.

Прибавим к строке 4 строку 3, умноженную на
:

.

Очевидно, что
, следовательно, система совместна. Из полученной системы уравнений

находим решение обратной подстановкой:

,
,
,
.

Пример 2. Найти решение системы:

.

Очевидно, что система несовместна, т.к.
, а
.

Достоинства метода Гаусса :

    Менее трудоемкий, чем метод Крамера.

    Однозначно устанавливает совместность системы и позволяет найти решение.

    Дает возможность определить ранг любых матриц.

Однородные системы линейных алгебраических уравнений

В рамках уроков метод Гаусса и Несовместные системы/системы с общим решением мы рассматривали неоднородные системы линейных уравнений , где свободный член (который обычно находится справа) хотя бы одного из уравнений был отличен от нуля.
И сейчас, после хорошей разминки с рангом матрицы , мы продолжим шлифовать техникуэлементарных преобразований на однородной системе линейных уравнений .
По первым абзацам материал может показаться скучным и заурядным, однако данное впечатление обманчиво. Помимо дальнейшей отработки технических приёмов будет много новой информации, поэтому, пожалуйста, постарайтесь не пренебрегать примерами данной статьи.

Что такое однородная система линейных уравнений?

Ответ напрашивается сам собой. Система линейных уравнений является однородной, если свободный член каждого уравнения системы равен нулю. Например:

Совершенно ясно, что однородная система всегда совместна , то есть всегда имеет решение. И, прежде всего, в глаза бросается так называемое тривиальное решение . Тривиальное, для тех, кто совсем не понял смысл прилагательного, значит, беспонтовое. Не академично, конечно, но зато доходчиво =) …Чего ходить вокруг да около, давайте выясним, нет ли у данной системы каких-нибудь других решений:

Пример 1

Решение : чтобы решить однородную систему необходимо записать матрицу системы и с помощью элементарных преобразований привести её к ступенчатому виду. Обратите внимание, что здесь отпадает необходимость записывать вертикальную черту и нулевой столбец свободных членов – ведь что ни делай с нулями, они так и останутся нулями:

(1) Ко второй строке прибавили первую строку, умноженную на –2. К третьей строке прибавили первую строку, умноженную на –3.

(2) К третьей строке прибавили вторую строку, умноженную на –1.

Делить третью строку на 3 не имеет особого смысла.

В результате элементарных преобразований получена эквивалентная однородная система , и, применяя обратный ход метода Гаусса, легко убедиться, что решение единственно.



Ответ :

Сформулируем очевидный критерий : однородная система линейных уравнений имееттолько тривиальное решение , если ранг матрицы системы (в данном случае 3) равен количеству переменных (в данном случае – 3 шт.).

Разогреваемся и настраиваем свой радиоприёмник на волну элементарных преобразований:

Пример 2

Решить однородную систему линейных уравнений

Из статьи Как найти ранг матрицы? вспоминаем рациональный приём попутного уменьшения чисел матрицы. В противном случае вам придётся разделывать крупную, а частенько и кусачую рыбу. Примерный образец оформления задания в конце урока.

Нули – это хорошо и удобно, однако на практике гораздо более распространен случай, когда строки матрицы системы линейно зависимы . И тогда неизбежно появление общего решения:

Пример 3

Решить однородную систему линейных уравнений

Решение : запишем матрицу системы и с помощью элементарных преобразований приведём её к ступенчатому виду. Первое действие направлено не только на получение единичного значения, но и на уменьшение чисел в первом столбце:

(1) К первой строке прибавили третью строку, умноженную на –1. Ко второй строке прибавили третью строку, умноженную на –2. Слева вверху я получил единицу с «минусом», что зачастую намного удобнее для дальнейших преобразований.

(2) Первые две строки одинаковы, одну из них удалили. Честное слово, не подгонял решение – так получилось. Если выполнять преобразования шаблонно, то линейная зависимость строк обнаружилась бы чуть позже.

(3) К третьей строке прибавили вторую строку, умноженную на 3.

(4) У первой строки сменили знак.

В результате элементарных преобразований получена эквивалентная система:

Алгоритм работает точно так же, как и для неоднородных систем . Переменные , «сидящие на ступеньках» – главные, переменная , которой не досталось «ступеньки» – свободная.

Выразим базисные переменные через свободную переменную:

Ответ : общее решение:

Тривиальное решение входит в общую формулу, и записывать его отдельно излишне.

Проверка выполняется тоже по обычной схеме: полученное общее решение необходимо подставить в левую часть каждого уравнения системы и получить законный ноль при всех подстановках.

На этом можно было бы тихо-мирно закончить, но решение однородной системы уравнений часто требуется представить в векторной форме с помощьюфундаментальной системы решений . Пожалуйста, временно забудьте обаналитической геометрии , поскольку сейчас речь пойдёт о векторах в общем алгебраическом смысле, который я немного приоткрыл в статье про ранг матрицы . Терминологии тушеваться не нужно, всё довольно просто.

Мы продолжим шлифовать технику элементарных преобразований на однородной системе линейных уравнений .
По первым абзацам материал может показаться скучным и заурядным, однако данное впечатление обманчиво. Помимо дальнейшей отработки технических приёмов будет много новой информации, поэтому, пожалуйста, постарайтесь не пренебрегать примерами данной статьи.

Что такое однородная система линейных уравнений?

Ответ напрашивается сам собой. Система линейных уравнений является однородной, если свободный член каждого уравнения системы равен нулю. Например:

Совершенно ясно, что однородная система всегда совместна , то есть всегда имеет решение. И, прежде всего, в глаза бросается так называемое тривиальное решение . Тривиальное, для тех, кто совсем не понял смысл прилагательного, значит, беспонтовое. Не академично, конечно, но зато доходчиво =) …Чего ходить вокруг да около, давайте выясним, нет ли у данной системы каких-нибудь других решений:

Пример 1


Решение : чтобы решить однородную систему необходимо записать матрицу системы и с помощью элементарных преобразований привести её к ступенчатому виду. Обратите внимание, что здесь отпадает необходимость записывать вертикальную черту и нулевой столбец свободных членов – ведь что ни делай с нулями, они так и останутся нулями:

(1) Ко второй строке прибавили первую строку, умноженную на –2. К третьей строке прибавили первую строку, умноженную на –3.

(2) К третьей строке прибавили вторую строку, умноженную на –1.

Делить третью строку на 3 не имеет особого смысла.

В результате элементарных преобразований получена эквивалентная однородная система , и, применяя обратный ход метода Гаусса, легко убедиться, что решение единственно.

Ответ :

Сформулируем очевидный критерий : однородная система линейных уравнений имеет только тривиальное решение , если ранг матрицы системы (в данном случае 3) равен количеству переменных (в данном случае – 3 шт.).

Разогреваемся и настраиваем свой радиоприёмник на волну элементарных преобразований:

Пример 2

Решить однородную систему линейных уравнений

Чтобы окончательно закрепить алгоритм, разберём финальное задание:

Пример 7

Решить однородную систему, ответ записать в векторной форме.

Решение : запишем матрицу системы и с помощью элементарных преобразований приведём её к ступенчатому виду:

(1) У первой строки сменили знак. Ещё раз заостряю внимание на неоднократно встречавшемся приёме, который позволяет существенно упростить следующее действие.

(1) Ко 2-й и 3-й строкам прибавили первую строку. К 4-й строке прибавили первую строку, умноженную на 2.

(3) Последние три строки пропорциональны, две из них удалили.

В результате получена стандартная ступенчатая матрица, и решение продолжается по накатанной колее:

– базисные переменные;
– свободные переменные.

Выразим базисные переменные через свободные переменные. Из 2-го уравнения:

– подставим в 1-е уравнение:

Таким образом, общее решение:

Поскольку в рассматриваемом примере три свободные переменные, то фундаментальная система содержит три вектора.

Подставим тройку значений в общее решение и получим вектор , координаты которого удовлетворяют каждому уравнению однородной системы. И снова повторюсь, что крайне желательно проверять каждый полученный вектор – времени займет не так много, а от ошибок убережёт стопроцентно.

Для тройки значений находим вектор

И, наконец, для тройки получаем третий вектор:

Ответ : , где

Желающие избежать дробных значений могут рассмотреть тройки и получить ответ в эквивалентном виде:

К слову о дробях. Посмотрим на полученную в задаче матрицу и зададимся вопросом – нельзя ли упростить дальнейшее решение? Ведь здесь мы сначала выразили через дроби базисную переменную , потом через дроби базисную переменную , и, надо сказать, процесс это был не самый простой и не самый приятный.

Второй вариант решения :

Идея состоит в том, чтобы попытаться выбрать другие базисные переменные . Посмотрим на матрицу и заметим две единицы в третьем столбце. Так почему бы не получить ноль вверху? Проведём ещё одно элементарное преобразование: