Статический момент инерции круга. Решение задач по сопромату

Осевой момент сопротивления - отношение момента инерции относительно оси к расстоянию от нее до наиболее удаленной точки сечения. [см 3 , м 3 ]

Особенно важны моменты сопротивления относительно главных центральных осей:

прямоугольник:
; круг:W x =W y =
,

трубчатое сечение (кольцо): W x =W y =
, где = d Н /d B .

Полярный момент сопротивления - отношение полярного момента инерции к расстоянию от полюса до наиболее удаленной точки сечения:
.

Для круга W р =
.

Кручение

Т

акой вид деформации, при котором в поперечных сечениях возникает только одни крутящие моменты - М к. Знак крутящего момента М к удобно определять по направлению внешнего момента. Если при взгляде со стороны сечения внешний момент направлен против час.стр., то М к >0 (встречается и обратное правило). При кручении происходит поворот одного сечения относительно другого на угол закручивания -. При кручении круглого бруса (вала) возникает напряженное состояние чистого сдвига (нормальные напряжения отсутствуют), возникают только касательные напряжения. Принимается, что сечения плоские до закручивания остаются плоскими и после закручивания - закон плоских сечений . Касательные напряжения в точках сечения изменяются пропорционально расстоянию точек от оси. Из закона Гука при сдвиге: =G, G - модуль сдвига,
,
- полярный момент сопротивления круглого сечения. Касательные напряжения в центре равны нулю, чем дальше от центра, тем они больше. Угол закручивания
,GJ p - жесткость сечения при кручении .
-относительный угол закручивания . Потенциальная энергия при кручении:
. Условие прочности:
, [] =, для пластичного материала за  пред принимается предел текучести при сдвиге  т, для хрупкого материала –  в – предел прочности, [n] – коэффициент запаса прочности. Условие жесткости при кручении:  max [] – допустимый угол закручивания.

Кручение бруса прямоугольного сечения

При этом нарушается закон плоских сечений, сечения некруглой формы при кручении искривляются –депланация поперечного сечения.

Эпюры касательных напряжений прямоугольного сечения.

;
,J k и W k - условно называют моментом инерции и моментом сопротивления при кручении. W k = hb 2 ,

J k = hb 3 , Максимальные касательные напряжения  max будут посредине длинной стороны, напряжения по середине короткой стороны: =  max , коэффициенты: ,, приводятся в справочниках в зависимости от отношения h/b (например, при h/b=2, =0,246; =0,229; =0,795.

Изгиб

П
лоский (прямой) изгиб
- когда изгибающий момент действует в плоскости, проходящей через одну из главных центральных осей инерции сечения, т.е. все силы лежат в плоскости симметрии балки. Основные гипотезы (допущения): гипотеза о не надавливании продольных волокон: волокна, параллельные оси балки, испытывают деформацию растяжения – сжатия и не оказывают давления друг на друга в поперечном направлении; гипотеза плоских сечений: сечение балки, плоское до деформации, остается плоским и нормальным к искривленной оси балки после деформации. При плоском изгибе в общем случае возникают внутренние силовые факторы : продольная сила N, поперечная сила Q и изгибающий момент М. N>0, если продольная сила растягивающая; при М>0 волокна сверху балки сжимаются, снизу растягиваются. .

С
лой, в котором отсутствуют удлинения, называетсянейтральным слоем (осью, линией). При N=0 и Q=0, имеем случай чистого изгиба. Нормальные напряжения:
, - радиус кривизны нейтрального слоя, y - расстояние от некоторого волокна до нейтрального слоя. Закон Гука при изгибе :
, откуда (формула Навье):
,J x - момент инерции сечения относительно главной центральной оси, перпендикулярной плоскости изгибающего момента, EJ x - жесткость при изгибе, - кривизна нейтрального слоя.

М
аксимальные напряжения при изгибе возникают в точках, наиболее удаленных от нейтрального слоя:
,J x /y max =W x -момент сопротивления сечения при изгибе,
. Если сечение не имеет горизонтальной оси симметрии, то эпюра нормальных напряжений не будет симметричной. Нейтральная ось сечения проходит через центр тяжести сечения. Формулы для определения нормального напряжения для чистого изгиба приближенно годятся и когда Q0. Это случай поперечного изгиба . При поперечном изгибе, кроме изгибающего момента М, действует поперечная сила Q и в сечении возникают не только нормальные , но и касательные  напряжения. Касательные напряжения определяются формулой Журавского:
, гдеS x (y) - статический момент относительно нейтральной оси той части площади, которая расположена ниже или выше слоя, отстоящего на расстоянии "y" от нейтральной оси; J x - момент инерции всего поперечного сечения относительно нейтральной оси, b(y) - ширина сечения в слое, на котором определяются касательные напряжения.

Д
ля прямоугольного сечения:
,F=bh, для круглого сечения:
,F=R 2 , для сечения любой формы
,

k- коэфф., зависящий от формы сечения (прямоугольник: k= 1,5; круг - k= 1,33).

M

max и Q max определяются из эпюр изгибающих моментов и поперечных сил. Для этого балка разрезается на две части и рассматривается одна из них. Действие отброшенной части заменяется внутренними силовыми факторами М и Q, которые определяются из уравнений равновесия. В некоторых вузах момент М>0 откладывается вниз, т.е. эпюра моментов строится на растянутых волокнах. При Q= 0 имеем экстремум эпюры моментов. Дифференциальные зависимости между М, Q и q :

q - интенсивность распределенной нагрузки [кН/м]

Главные напряжения при поперечном изгибе :

.

Расчет на прочность при изгибе : два условия прочности, относящиеся к различным точкам балки: а) по нормальным напряжениям
, (точки наиболее удаленные от С); б) по касательным напряжениям
, (точки на нейтр.оси). Из а) определяют размеры балки:
, которые проверяют по б). В сечениях балок могут быть точки, где одновременно большие нормальные и большие касательные напряжения. Для этих точек находятся эквивалентные напряжения, которые не должны превышать допустимых. Условия прочности проверяются по различным теориям прочности

I-я:
;II-я:(при коэфф.Пуассона=0,3); - применяются редко.

теория Мора: ,
(используется для чугуна, у которого допускаемое напряжение на растяжение [ р ][ с ] – на сжатие).

Осевым (или экваториальным) моментом инерции сечения относительно некоторой оси называется взятая по всей его площади F сумма произведений элементарных площадок на квадраты их расстояний от этой оси, т. е.

Полярным моментом инерции сечения относительно некоторой точки (полюса) называется взятая по всей его площади F сумма произведений элементарных площадок на квадраты их расстояний от этой точки, т. е.

Центробежным моментом инерции сечения относительно некоторых двух взаимно перпендикулярных осей называется взятая по всей его площади F сумма произведений элементарных площадок на их расстояния от этих осей, т.е.

Моменты инерции выражаются в и т.д.

Осевые и полярные моменты инерции всегда положительны, так как в их выражения под знаки интегралов входят величины площадок (всегда положительные) и квадраты расстояний этих площадок от данной оси или полюса.

На рис. 9.5, а изображено сечение площадью F и показаны оси у и z. Осевые моменты инерции этого сечения относительно осей у :

Сумма этих моментов инерции

и, следовательно,

Таким образом, сумма осевых моментов инерции сечения относительно двух взаимно перпендикулярных осей равна полярному моменту инерции этого сечения относительно точки пересечения указанных осей.

Центробежные моменты инерции могут быть положительными, отрицательными или равными нулю. Так, например, центробежный момент инерции сечения, показанного на рис. 9.5, а, относительно осей у и положителен, так как для основной части этого сечения, расположенной в первом квадранте, значения , а следовательно, и положительны.

Если изменить положительное направление оси у или на обратное (рис. 9.5,б) или повернуть обе эти оси на 90° (рис. 9.5, в), то центробежный момент инерции станет отрицательным (абсолютная величина его не изменится), так как основная часть сечения будет тогда располагаться в квадранте, для точек которого координаты у положительны, а координаты z отрицательны. Если изменить положительные направления обеих осей на обратные, то это не изменит ни знак, ни величину центробежного момента инерции.

Рассмотрим фигуру, симметричную относительно одной или нескольких осей (рис. 10.5). Проведем оси так, чтобы хотя бы одна из них (в данном случае ось у) совпадала с осью симметрии фигуры. Каждой площадке расположенной справа от оси соответствует в этом случае такая же площадка расположенная симметрично первой, но слева от оси у. Центробежный момент инерции каждой пары таких симметрично расположенных площадок равен:

Следовательно,

Таким образом, центробежный момент инерции сечения относительно осей, из которых одна или обе совпадают с его осями симметрии, равен нулю.

Осевой момент инерции сложного сечения относительно некоторой оси равен сумме осевых моментов инерции составляющих его частей относительно этой же оси.

Аналогично центробежный момент инерции сложного сечения относительно любых двух взаимно перпендикулярных осей равен сумме центробежных моментов инерции составляющих его частей относительно этих же осей. Также и полярный момент инерции сложного сечения относительно некоторой точки равен сумме полярных моментов инерции составляющих его частей относительно той же точки.

Следует иметь в виду, что нельзя суммировать моменты инерции, вычисленные относительно различных осей и точек.


1.Осевые моменты инерции относительно взаимно перпендикулярных осей x0y (совпадающих со сторонами треугольника) (рис.2.17).

Для определения момента инерции относительно оси х выделим элементарную площадку в виде полоски бесконечно малой ширины , параллельной оси х , на расстоянии у от нее. Площадь площадки . Длину полоски b(y) определим из подобия треугольников с основаниями b(y) и b , откуда . Тогда . Подставляя это

соотношение в выражение для I x (2.21) и устанавливая пределы интегрирования «0-h », получим

.

Аналогично определяется I y .

2. Центробежный момент инерции относительно осей x0y (совпадающих со сторонами треугольника)

Центробежный момент инерции, согласно определению, равен

Используем ту же элементарную площадку, что и ранее (см. рис.2.17). В качестве координаты х примем координату центра тяжести элементарной площадки

.

Подставляем это выражение, а также формулу для dA под интеграл и интегрируем в пределах от 0 до h

Таким образом, формулы для моментов инерции сечения, в виде прямоугольного треугольника, относительно осей, совпадающих с катетами, имеют вид

Заметим, что для рассматриваемого сечения больший интерес представляют моменты инерции относительно центральных осей (ЦО), параллельных катетам треугольника.

3. Моменты инерции относительно взаимно перпендикулярных ЦО x с сy с (параллельных сторонам треугольника)

Формулы для моментов инерции прямоугольного треугольника относительно осей x с сy с (см. рис.2.17) легко получить, используя выражения (2.24), а также теорему о параллельном переносе осей, согласно которой:

осевые моменты инерции ; ;

центробежный момент инерции .

Здесь: а , е – координаты центра тяжести сечения в системе координат x0y

Подставляя эти выражения, а также соотношения (2.24) в приведенные выше формулы, получим

(2.25)

Отметим, что ориентация сечения относительно осей оказывает влияние на знак центробежного момента инерции. Для рассматриваемой ориентации оказалось, что <0. Действительно, на рис.2.17 видно, что большая часть сечения лежит в области с отрицательным произведением координат х ´у (вторая и четвертая координатные четверти). Это и обусловливает отрицательный знак полученного центробежного момента инерции. Ниже приведены схемы с различной ориентацией прямоугольного треугольника относительно ЦО, параллельных сторонам, для которых указан знак .

При проверке прочности частей конструкций нам приходится встречаться с сечениями довольно сложной формы, для которых нельзя вычислить момент инерции таким простым путем, каким мы пользовались для прямоугольника и круга.

Таким сечением может быть, например, тавр (Рис.5 а ) кольцевое сечение трубы, работающей на изгиб (авиационные конструкции) (Рис.5, б ), кольцевое сечение шейки вала или еще более сложные сечения. Все эти сечения можно разбить на простейшие, как-то: прямоугольники, треугольники, круги и т.д. Можно показать, что момент инерции такой сложной фигуры является суммой моментов инерции частей, на которые мы ее разбиваем.

Рис.5. Сечения типа тавр — а) и кольцо б)

Известно, что момент инерции любой фигуры относительно оси у у равен:

где z — расстояние элементарных площадок до оси у у .

Разобьем взятую площадь на четыре части: , , и . Теперь при вычислении момента инерции можно сгруппировать слагаемые в подинтегральной функции так, чтобы отдельно произвести суммирование для каждой из выделенных четырех площадей, а затем эти суммы сложить. Величина интеграла от этого не изменится.

Наш интеграл разобьется на четыре интеграла, каждый из которых будет охватывать одну из площадей, , и :

Каждый из этих интегралов представляет собой момент инерции соответствующей части площади относительно оси у у ; поэтому

где — момент инерции относительно оси у у площади , — то же для площади и т. д.

Полученный результат можно формулировать так: момент инерции сложной фигуры равен сумме моментов инерции составных ее частей. Таким образом, нам необходимо уметь вычислять момент инерции любой фигуры относительно любой оси, лежащей в ее плоскости.

Решение этой задачи и составляет содержание настоящей и последующих двух собеседований.

Моменты инерции относительно параллельных осей.

Задачу — получить наиболее простые формулы для вычисления момента инерции любой фигуры относительно любой оси — будем решать в несколько приемов. Если взять серию осей, параллельных друг другу, то оказывается, что можно легко вычислить моменты инерции фигуры относительно любой из этих осей, зная ее момент инерции относительно оси, проходящей через центр тяжести фигуры параллельно выбранным осям.

Рис.1. Расчетная модель определения моментов инерции для параллельных осей.

Оси, проходящие через центр тяжести, мы будем называть центральными осями . Возьмем (Рис.1) произвольную фигуру. Проведем центральную ось Оу , момент инерции относительно этой оси назовем . Проведем в плоскости фигуры осьпараллельно оси у на расстоянии от нее. Найдем зависимость между и — моментом инерции относительно оси . Для этого напишем выражения для и . Разобьем площадь фигуры на площадки ; расстояния каждой такой площадки до осей у и назовем и . Тогда


Из рис.1 имеем:

Первый из этих трех интегралов — момент инерции относительно центральной оси Оу . Второй — статический момент относительно той же оси; он равен нулю, так как ось у проходит через центр тяжести фигуры. Наконец, третий интеграл равен площади фигуры F . Таким образом,

(1)

т. е. момент инерции относительно любой оси равен моменту инерции относительно центральной оси, проведенной параллельно у данной, плюс произведение площади фигуры на квадрат расстояния между осями.

Значит, наша задача теперь свелась к вычислению только центральных моментов инерции; если мы их будем знать, то сможем вычислить момент инерции относительно любой другой оси. Из формулы (1) следует, что центральный момент инерции является наименьшим среди моментов инерции относительно параллельных осей и для него мы получаем:

Найдем также центробежный момент инерции относительно осей , параллельных центральным, если известен (Рис.1). Так как по определению

где: , то отсюда следует

Так как два последних интеграла представляют собой статические моменты площади относительно центральных осей Оу и Oz то они обращаются в нуль и, следовательно:

(2)

Центробежный момент инерции относительно системы взаимно перпендикулярных осей, параллельных центральным, равен центробежному моменту инерции относительно этих центральных осей плюс произведение из площади фигуры, на координаты ее центра тяжести относительно новых осей.

Зависимость между моментами инерции при повороте осей.

Центральных осей можно провести сколько угодно. Является вопрос, нельзя ли выразить момент инерции относительно любой центральной оси в зависимости от момента инерции относительно одной или двух определенных осей. Для этого посмотрим, как будут меняться моменты инерции относительно двух взаимно перпендикулярных осей при повороте их на угол .

Возьмем какую-либо фигуру и проведем через ее центр тяжести О две взаимно перпендикулярные оси Оу и Oz (Рис.2).

Рис.2. Расчетная модель для определения моментов инерции для повернутых осей.

Пусть нам известны осевые моменты инерции относительно этих осей , , а также центробежный момент инерции . Начертим вторую систему координатных осей и наклоненных к первым под углом ; положительное направление этого угла будем считать при повороте осей вокруг точки О против часовой стрелки. Начало координат О сохраняем. Выразим моменты относительно второй системы координатных осей и , через известные моменты инерции и .

Напишем выражения для моментов инерции относительно этих осей:

Аналогично:

Для решения задач могут понадобиться формулы перехода от одних осей к другим для центробежного момента инерции. При повороте осей (Рис.2) имеем:

где и вычисляются по формулам (14.10); тогда

После преобразований получим:

(7)

Таким образом, для того чтобы вычислить момент инерции относительно любой центральной оси , надо знать моменты инерции и относительно системы каких-нибудь двух взаимно перпендикулярных центральных осей Оу и Oz , центробежный момент инерции относительно тех же осей и угол наклона оси к оси у .

Для вычисления же величин > , приходится так выбирать оси у и z и разбивать площадь фигуры на такие составные части, чтобы иметь возможность произвести это вычисление, пользуясь только формулами перехода от центральных осей каждой из составных частей к осям, им параллельным. Как это сделать на практике, будет показано ниже на примере. Заметим, что при этом вычислении сложные фигуры надо разбивать на такие элементарные части, для которых по возможности известны величины центральных моментов инерции относительно системы взаимно перпендикулярных осей.

Заметим, что ход вывода и полученные результаты не изменились бы, если бы начало координат было взято не в центре тяжести сечения, а в любой другой точке О . Таким образом, формулы (6) и (7) являются формулами перехода от одной системы взаимно-перпендикулярных осей к другой, повернутой на некоторый угол , независимо от того, центральные это оси или нет.

Из формул (6) можно получить еще одну зависимость между моментами инерции при повороте осей. Сложив выражения для и получим

т. е. сумма моментов инерции относительно любых взаимно перпендикулярных осей у и z не меняется при их повороте. Подставляя последнее выражение вместо и их значения, получим:

где — расстояние площадок dF от точки О . Величина является, как уже известно, полярным моментом инерции сечения относительно точки О .

Таким образом, полярный момент инерции сечения относительно какой-либо точки равен сумме осевых моментов инерции относительно взаимно перпендикулярных осей, проходящих через эту точку. Поэтому эта сумма и остается постоянной при повороте осей. Этой зависимостью (14.16) можно пользоваться для упрощения вычисления моментов инерции.

Так, для круга:

Так как по симметрии для круга то

что было получено выше путем интегрирования.

Точно также для тонкостенного кольцевого сечения можно получить:

Главные оси инерции и главные моменты инерции.

Как уже известно, зная для данной фигуры центральные моменты инерции , и , можно вычислить момент инерции и относительно любой другой оси.

При этом можно за основную систему осей принять такую систему, при которой формулы существенно упрощаются. Именно, можно найти систему координатных осей, для которых центробежный момент инерции равен.нулю. В самом деле, моменты инерции и всегда положительны, как суммы положительных слагаемых, центробежный же момент

может быть и положительным и отрицательным, так как слагаемые zydF могут быть разного знака в зависимости от знаков z и у для той или иной площадки. Значит, он может быть равен нулю.

Оси, относительно которых центробежный момент инерции обращается в нуль, называются главными осями инерции. Если начало такой системы помещено в центре тяжести фигуры, то это будут главные центральные оси . Эти оси мы будем обозначать и ; для них

Найдем, под каким углом наклонены к центральным осям у и z (фиг. 198) главные оси.

Рис.1. Расчетная модель для определения положения главных осей инерции.

В известном выражении для перехода от осей yz к осям , для центробежного момента инерции дадим углу значение ; тогда оси и , совпадут c главными, и центробежный момент инерции будет равен нулю:

(1)

Этому уравнению удовлетворяют два значения , отличающиеся на 180°, или два значения , отличающиеся на 90°. Таким образом, это уравнение дает нам положение двух осей , составляющих между собой прямой угол. Это и будут главные центральные оси и , для которых .

Пользуясь этой формулой, можно по известным , и получить формулы для главных моментов инерции и . Для этого опять воспользуемся выражениями для осевых моментов инерции общего положения. Они определяют значения и если вместо подставить

(2)

Полученными соотношениями можно пользоваться при решении задач. Одним из главных моментов инерции является , другим .

Формулы (2) можно преобразовать к виду, свободному от значения . Выражая и через и подставляя их значения в первую формулу (2), получим, делая одновременно замену из формулы (1):

Заменяя здесь из формулы (1) дробь на

получаем

(3)

К этому же выражению можно прийти, делая подобное же преобразование второй формулы (3).

За основную систему центральных осей, от которых можно переходить к любой другой, можно взять не Оу и Oz , а главные оси и ; тогда в формулах не будет фигурировать центробежный момент инерции (). Обозначим угол, составленный осью , (Рис.2) с главной осью , через . Для вычисления , и , переходя от осей и нужно в ранее найденных выражениях для , и , заменить угол через , а , и — через , и . В результате получаем:

По своему виду эти формулы совершенно аналогичны формулам для нормальных и касательных напряжений по двум взаимно-перпендикулярным площадкам в элементе, подвергающемся растяжению в двух направлениях. Укажем лишь формулу, позволяющую из двух значений угла выделить то, которое соответствует отклонению первой главной оси (дающей max J ) от начального положения оси у :

Теперь можно окончательно формулировать, что надо сделать, чтобы получить возможность простейшим образом вычислять момент инерции фигуры относительно любой оси. Необходимо через центр тяжести фигуры провести оси Оу и Oz так, чтобы, разбивая фигуру на простейшие части, мы могли легко вычислить моменты , проходящей на расстоянии (рис.2) от центра тяжести:

Во многих случаях удается сразу провести главные оси фигуры; если фигура имеет ось симметрии, то это и будет одна из главных осей. В самом деле, при выводе формулы мы уже имели дело с интегралом , представляющим собой центробежный момент инерции сечения относительно осей у и z ; было доказано, что если ось Oz является осью симметрии, этот интеграл обращается в нуль.

Стало быть, в данном случае оси Оу и Oz являются главными центральными осями инерции сечения. Таким образом, ось симметрии — всегда главная центральная ось; вторая главная центральная ось проходит через центр тяжести перпендикулярно к оси симметрии.

Пример. Найти моменты инерции прямоугольника (Рис.3) относительно осей и равны:

Моменты инерции относительно осей и равны:

Центробежный момент инерции равен.

§ 4.5. ВЫЧИСЛЕНИЕ МОМЕНТОВ ИНЕРЦИИ СЕЧЕНИЙ ПРОСТОЙ ФОРМЫ

Как указано в § 1.5, геометрические характеристики сложных сечений определяются путем расчленения их на ряд простых фигур, геометрические характеристики которых можно вычислить по соответствующим формулам или определить по специальным таблицам. Эти формулы получаются в результате непосредственного интегрирования выражений (8.5)-(10.5). Приемы их получения рассматриваются ниже на примерах прямоугольника, треугольника и круга.

Прямоугольное сечение

Определим осевой момент инерции прямоугольника высотой h и шириной b относительно оси проходящей через его основание (рис. 11.5, а). Выделим из прямоугольника линиями, параллельными оси элементарную полоску высотой и шириной b.

Площадь этой полоски расстояние от полоски до оси равно их. Подставим эти величины в выражение момента инерции (8.5):

Аналогичным путем для момента инерции относительно оси можно получить выражение

Для определения центробежного момента инерции выделим из прямоугольника линиями, параллельными осям (рис.

11.5, б), элементарную площадку величиной. Определим сначала центробежный момент инерции не всего прямоугольника, а лишь вертикальной полоски высотой h и шириной расположенной на расстоянии от оси

Произведение вынесено за знак интеграла, так как для всех площадок, принадлежащих рассматриваемой вертикальной полоске, оно постоянно.

Проинтегрируем затем выражение в пределах от до

Определим теперь осевые моменты инерции прямоугольника относительно осей у и, проходящих через центр тяжести параллельно сторонам прямоугольника (рис. 12.5). Для этого случая пределы интегрирования будут от до

Центробежный момент инерции прямоугольника относительно осей (рис. 12.5) равен нулю, так как эти оси совпадают с его осями симметрии.

Треугольное сечение

Определим осевые моменты инерции треугольника относительно трех параллельных осей, проходящих через его основание (рис. 13.5, а), центр тяжести (рис. 13.5,б) и вершину (рис. 13.5, е).

Для случая, когда ось проходит через основание треугольника (рис. 13.5, а),

Для случая, когда ось проходит через центр тяжести треугольника параллельно его основанию (рис. 13.5, б),

В случае, когда ось проходит через вершину треугольника параллельно его основанию (рис. 13.5, в),

Момент инерции значительно больше (в три раза), чем момент инерции так как основная часть площади треугольника более удалена от оси чем от оси

Выражения (17.5) - (19.5) получены для равнобедренного треугольника. Однако они верны и для неравнобедренных треугольников. Сравнивая, например, треугольники, показанные на рис. 13.5, а и 13.5, г, из которых первый равнобедренный, а второй неравнобедренный, устанавливаем, что размеры площадки и пределы, в которых изменяется у (от 0 до) для обоих треугольников одинаковы. Следовательно, моменты инерции для них также одинаковы. Аналогично можно показать, что осевые моменты инерции всех сечений, изображенных на рис. 14.5, одинаковы. Вообще смещение частей сечения параллельно некоторой оси не влияет на величину осевого момента инерции относительно этой оси.

Очевидно, что сумма осевых моментов инерции треугольника относительно осей показанных на рис. 13.5, а и 13.5, в, должна быть равна осевому моменту инерции прямоугольника относительно оси показанной на рис. 11.5, а. Это следует из того, что прямоугольник можно рассматривать как два треугольника, для одного из которых ось проходит через основание, а для другого - через вершину параллельно его основанию (рис. 15.5).

Действительно, по формулам (17.5) и (19.5)

что совпадает с выражением прямоугольника по формуле (12.5).

Сечение в форме круга

Определим осевой момент инерции круга относительно любой оси, проходящей через его центр тяжести. Из рис. 16.5, а следует

Очевидно, что относительно любой оси, проходящей через центр круга, осевой момент инерции будет равен и, следовательно,

По формуле (11.5) находим полярный момент инерции круга относительно его центра:

Формулу осевого момента инерции круга можно получить более простым путем, если предварительно вывести формулу для его полярного момента инерции относительно центра (точки О). Для этого выделим из круга элементарное кольцо толщиной радиусом и площадью (рис. 16.5,б).

Полярный момент инерции элементарного кольца относительно центра круга так как все элементарные площадки из которых состоит это кольцо, расположены на одинаковом расстоянии от центра круга. Следовательно,

Этот результат совпадает с полученным выше.

Моменты инерции (полярный и осевые) сечения, имеющего форму кругового кольца с наружным диаметром d и внутренним (рис. 17.5), можно определить как разности между соответствующими моментами инерции наружного и внутреннего кругов.

Полярный момент инерции кольца на основании формулы (21.5)

или, если обозначить

Аналогично, для осевых моментов инерции кольца

Момент инерции и момент сопротивления

При определении сечения строительных конструкций очень часто необходимо знать момент инерции и момент сопротивления для рассматриваемого поперечного сечения конструкции. Что такое момент сопротивления и как он связан с моментом инерции изложено отдельно. Кроме того, для сжимаемых конструкций также нужно знать значение радиуса инерции. Определить момент сопротивления и момент инерции, а иногда и радиус инерции для большинства поперечных сечений простой геометрической формы можно по давно известным формулам:

Таблица 1. Формы сечения, площади сечений, моменты инерции и моменты сопротивления для конструкций достаточно простых геометрических форм.

Обычно, этих формул достаточно для большинства расчетов, но случаи бывают всякие и сечение конструкции может быть не такой простой геометрической формы или положение осей, относительно которых нужно определить момент инерции или момент сопротивления, может быть не таким, тогда можно воспользоваться следующими формулами:

Таблица 2. Формы сечения, площади сечений, моменты инерции и моменты сопротивления для конструкций более сложных геометрических форм

Как видно из таблицы 2, высчитывать момент инерции и момент сопротивления для неравнополочных уголков достаточно сложно, да нет в этом необходимости. Для неравнополочных и равнополочных прокатных уголков, а также для швеллеров, двутавров и профильных труб есть сортаменты. В сортаментах значения момента инерции и момента сопротивления приводятся для каждого профиля.

Таблица 3. Изменения моментов инерции и моментов сопротивления в зависимости от положения осей.

Формулы из таблицы 3 могут понадобиться для расчета наклонных элементов кровли.

Было бы неплохо объяснить на наглядном примере для особо одаренных, типа меня, что такое момент инерции и с чем его едят. На специализированных сайтах как-то всё очень запутанно, а у Дока есть явный талант довести информацию, быть может не самую сложную, но очень грамотно и понятно

В принципе, что такое момент инерции и откуда он взялся, достаточно подробно объяснено в статье “Основы сопромата, расчетные формулы”, здесь лишь повторюсь: “W – это момент сопротивления поперечного сечения балки, другими словами, площадь сжимаемой или растягиваемой части сечения балки, умноженная на плечо действия равнодействующей силы”. Момент сопротивления необходимо знать для расчетов конструкции на прочность, т.е. по предельным напряжениям. Момент инерции необходимо знать для определения углов поворота поперечного сечения и прогиба (смещения) центра тяжести поперечного сечения, так как максимальные деформации возникают в самом верхнем и в самом нижнем слое изгибаемой конструкции, то определить момент инерции можно, умножив момент сопротивления на расстояние от центра тяжести сечения до верхнего или нижнего слоя, поэтому для прямоугольных сечений I=Wh/2. При определении момента инерции сечений сложных геометрических форм сначала сложная фигура разбивается на простейшие, затем определяются площади сечения этих фигур и моменты инерции простейших фигур, затем площади простейших фигур умножаются на квадрат расстояния от общего центра тяжести сечения до центра тяжести простейшей фигуры. Момент инерции простейшей фигуры в составе сложного сечения равен моменту инерции фигуры + квадрат расстояния умноженный на площадь. Затем полученные моменты инерции суммируются и получается момент инерции сложного сечения. Но это максимально упрощенные формулировки (хотя, соглашусь, все равно выглядит достаточно мудрено).

Момент инерции и момент сопротивления - Доктор Лом


При определении сечения строительных конструкций очень часто необходимо знать момент инерции и момент сопротивления для поперечного сечения конструкции. Определить момент сопротивления и момент энерции для абсолютного большинства поперечных сечений простой геометрической формы можно по давно известным формулам

Глава 5. МОМЕНТЫ ИНЕРЦИИ ПЛОСКИХ СЕЧЕНИЙ

Любое плоское сечение характеризуется рядом геометрических характеристик: площадью, координатами центра тяжести, статическим моментом, моментом инерции и др.

Статические моменты относительно осей х и y равны:

Статические моменты обычно выражаются в кубических сантиметрах или метрах и могут иметь как положительные, так и отрицательные значения. Ось, относительно которой статический момент равен нулю, называется центральной. Точка пересечения центральных осей называется центром тяжести сечения . Формулы для определения координат центра тяжести x c и y c сложного сечения, разбитого на простейшие составные части, для которых известны площади А i и положение центра тяжести x ci и y ci ,имеют вид

Величина момента инерции характеризует сопротивляемость стержня деформации (кручения, изгиба) в зависимости от размеров и формы поперечного сечения. Различают моменты инерции:

– осевые, определяемые интегралами вида

Осевые и полярные моменты инерции всегда положительны и не

обращаются в нуль. Полярный момент инерции I p равен сумме осевых моментов инерции I х и I у относительно любой пары взаимно перпендикулярных осей х и у :

Центробежный момент инерции может быть положительным, отрицательным и равным нулю. Размерность моментов инерции - см 4 или м 4 . Формулы для определения моментов инерции простых сечений относительно центральных осей приведены в справочниках. При вычислении моментов инерции сложных сечений часто используют формулы перехода от центральных осей простых сечений к другим осям, параллельным центральным.

где – моменты инерции простых сечений относительно центральных осей;

m, n – расстояния между осями (рис. 18).

Рис. 18. К определению моментов инерции относительно осей,

Важное значение имеют главные центральные оси сечения. Главными центральными называются две взаимно перпендикулярные оси, проходящие через центр тяжести сечения, относительно которых центробежный момент инерции равен нулю, а осевые моменты инерции имеют экстремальные значения. Главные моменты инерции обозначаются I u (max) и I v (min) и определяются по формуле

Положение главных осей определяется углом α , который находится из формулы

Угол α откладывается от оси с большим неглавным моментом инерции; положительное значение – против часовой стрелки.

Если сечение имеет ось симметрии, то эта ось является главной. Другая главная ось перпендикулярна оси симметрии. На практике часто используются сечения, составленные из нескольких прокатных профилей (двутавр, швеллер, уголок). Геометрические характеристики этих профилей приведены в таблицах сортамента. Для неравнобокого и равнобокого уголков центробежный момент инерции относительно центральных осей, параллельных полкам, определяется по формуле

Обратите внимание на обозначение главных центральных осей в таблице сортамента для уголков. Знак I xy для уголка зависит от положения его в сечении. На рис.19 показаны возможные положения уголка в сечении и приведены знаки для I xy .

Рис. 19. Возможные положения уголка в сечении

Определить I u , I v и положение главных центральных осей сечения

Сложное сечение состоит из двух прокатных профилей. Выписка из таблиц сортамента (прил. 5) приведена на рис. 21.

В качестве вспомогательных примем оси, проходящие по внешним

сторонам швеллера (оси x B , y B , см. рис. 20).Координаты центра тяжести сечения:

(вычислите самостоятельно).

Рис. 20. Положение главных центральных осей инерции

U и V сложного сечения

В качестве вспомогательных можно было бы выбрать, например, центральные оси швеллера. Тогда несколько сократится объем вычислений.

Осевые моменты инерции:

Обратите внимание, что неравнобокий уголок в сечении расположен

иначе, чем показано в таблице сортаментов. Значение вычислите самостоятельно.


№ 24 180 x 110 x 12

Рис. 21. Значения геометрических характеристик прокатных профилей:

а – швеллера № 24; б – неравнобокого уголка 180 x 110 x 12

Центробежные моменты инерции:

– для швеллера (есть оси симметрии);

– для уголка,

знак минус – в связи с положением уголка в сечении;

– для всего сечения:

Проследите назначение знаков у n и m . От центральных осей швеллера переходим к общим центральным осям сечения, поэтому + m 2

Главные моменты инерции сечения:

Положение главных центральных осей сечения:

; α = 55 о 48 ′ ;

Проверка правильности вычисления величин I u , I v и α производится по формуле

Угол α для этой формулы отсчитывается от оси u .

Рассмотренное сечение имеет наибольшую сопротивляемость изгибу относительно оси u и наименьшую – относительно оси v .


Глава 5. МОМЕНТЫ ИНЕРЦИИ ПЛОСКИХ СЕЧЕНИЙ Любое плоское сечение характеризуется рядом геометрических характеристик: площадью, координатами центра тяжести, статическим моментом, моментом инерции и