Нитрифицирующие бактерии значение. Выявление нитрифицирующих бактерий на плотных средах

Бактерии встречаются даже в самых отдаленных от берега местах Ледовитого океана. Б. Л. Исаченко обнаружил нитрифицирующие, денитрифицирующие бактерии, а также бактерии, восстанавливающие сернокислые соли и усваивающие атмосферный азот (Azotobactвr и С1. ра,51еиг1апит) на глубине 100 м при общей глубине моря 180 м. Морские микробы лучше развиваются при содержании в воде 2-3% хлористого натрия.[ ...]

Нитрифицирующие бактерии могут повышать потребность в кислороде при анализах по определению БПК, как показано в уравнениях (3.7) и (3.8). К счастью, рост нитрифицирующих бактерий отстает от роста микроорганизмов, осуществляющих окисление углеродсодержащих веществ. Нитрификация обычно начинается через несколько дней после пятисуточного периода, в течение которого определяют БПК5 неочищенной сточной воды. В стоках, поступающих в очистные установки, и в воде водоемов могут быть обнаружены признаки ранней нитрификации, если проба имеет относительно высокую популяцию нитрифицирующих бактерий. Нет ни одного стандартного метода, рекомендуемого для предотвращения нитрификации; однако такие ингибирующие агенты, как тиомочевина или 2-хлор-6-трихлорметилпиридин при использовании специальной лабораторной методики можно применять для; прекращения образования нитратов.[ ...]

Бактерии-симбионты населяют кишечник травоядных животных; бактериальная микрофлора кишечника человека участвует в процессах переваривания целлюлозы (растительной клетчатки). Эти бактерии также синтезируют некоторые витамины. Нитрифицирующие бактерии - симбионты бобовых растений - обогащают почву азотом.[ ...]

Бактерии первой фазы нитрификации представлены четырьмя родами: Nitrosomonas, Nitrosocystis, Nitrosolobus и Nitrosospira. Из них наиболее изучен вид Nitrosomonas euro-раеа, хотя получение чистых культур этих микроорганизмов, как и других нитрифицирующих хемоавтотрофов, до сих пор остается достаточно сложным. Клетки N. europaea обычно овальные (0,6 -1,0 X 0,9-2,0 мкм), размножаются бинарным делением. В процессе развития культур в жидкой среде наблюдаются подвижные формы, имеющие один или несколько жгутиков, и неподвижные зооглеи.[ ...]

Нитрифицирующие бактерии относятся к группе автотрофов, получающих энергию из химических процессов, протекающих с неорганическими соединениями в отличие от фототрофов, использующих энергию света , либо от гетеротрофов, усваивающих углерод органических соединений . Денитрификаторы относятся к гетеротрофным бактериям; при недостатке кислорода они усваивают кислород нитритов и нитратов и используют его для окисления органических веществ. Образующийся при этом азот выделяется в свободном виде и возвращается в атмосферу. Некоторые виды микроорганизмов могут восстанавливать нитраты до аммиака . В настоящее время в процессах кругооборота азота в природе отмечается отставание процессов денитрификации от фиксации .[ ...]

Нитрифицирующие бактерии представлены двумя основными зидами: Nitrosomosonas и Nitrobacter. Почти всегда в больших или меньших количествах в илах присутствуют нитчатые бактерии Sphaerotilus u Cladothrix.[ ...]

Нитрифицирующие бактерии растут на простых минеральных средах, содержащих окисляемый субстрат в виде аммония или нитритов и углекислоту. Источником азота в конструктивных процессах могут быть, кроме аммония, гидроксиламин и нитриты.[ ...]

Нитрифицирующие бактерии чувствительны к присутствию ингибиторов в коммунальных стоках (см. разд. 3.4.4). Ингибирование может привести к необходимости в изменении вида уравнения роста и(или) значений констант. Для описания таких ситуаций существует несколько новых формулировок уравнения роста и введены новые параметры.[ ...]

Нитрифицирующие бактерии являются доминирующими в третьем реакторе, поскольку в воде осталось мало органического вещества.[ ...]

Для нитрифицирующих бактерий характерны низкие скорости роста, что связано с низким энергетическим выходом реакций окисления аммиака и нитрита. Медленный рост таких бактерий - основная проблема при нитрификации на станциях биологической очистки стоков.[ ...]

Для адаптации нитрифицирующих бактерий I фазы берется среда с аммонийно-магнезиальным фосфатом. Затем в нее вносят 1 мл/л воды, содержащей нитризомонас и немного испытуемого вещества.[ ...]

Хв,д или Хдвт - нитрифицирующие организмы, размерность - масса(ХПК)/м3. Нитрифицирующие организмы ответственны за процессы нитрификации стока. Во многих моделях принимают, что нитрифицирующие организмы окисляют аммоний Змн4 непосредственно в нитрат БN0,4> т- е- чт0 в эт°й группе присутствуют и аммоний- и нитрит-окисляющие бактерии (часто их называют М гозотопав и №1;гоЬайег).[ ...]

Среди почвенных бактерий особую функцию выполняют нитрифицирующие (азотфиксирующие), играющие важнейшую роль в круговороте азота в природе. За год бактериями фиксируется 160-170 млн т азота.[ ...]

Хемоавтотрофные нитрифицирующие бактерии имеют широкое распространение в природе и встречаются как в почве, так и в разных водоемах. Осуществляемые ими процессы могут происходить весьма в крупных масштабах и имеют существенное значение в круговороте азота в природе. Раньше считали, что деятельность нитрификаторов всегда способствует плодородию почвы, поскольку они переводят аммоний в нитраты, которые легко усваиваются растениями, а также повышают растворимость некоторых минералов. Сейчас, однако, взгляды на значение нитрификации несколько изменились. Во-первых, показано, что растения усваивают аммонийный азот и ионы аммония лучше удерживаются в почве, чем нитраты. Во-вто-рых, образование нитратов иногда приводит к нежелательному подкислению среды. В-третьих, нитраты могут восстанавливаться в результате денитрификации до N2, что приводит к обеднению почвы азотом.[ ...]

Чувствительность нитрифицирующих бактерий к органическим веществам характерна только для жидких культур, т. е. при выращивании этих бактерий на жидких питательных средах или при развитии их в водоемах и водотоках. При их развитии в почве подобное явление не наблюдается. Это объясняется тем, что нитрификация тормозится присутствием только воднорастворимого органического вещества, способного проникать в клетки нитрифицирующих бактерий. Таких веществ в почве не бывает в большом количестве.[ ...]

Зная скорость роста нитрифицирующих бактерий /Лнабл,А,расщ можно из выражения (6.3) определить необходимый возраст ила х.д, а из выражения (6.2) - необходимый объем реактора нитрификации.[ ...]

Как и все прочие виды бактерий, нитрифицирующие бактерии особенно чувствительны к резким изменениям температуры (рис. 3.8). Если температура возрастает быстро (за несколько часов), то повышение скорости роста идет медленнее, чем предсказывает расчет. А вот при резком уменьшении температуры активность, напротив, падает сильнее, чем следует из рис. 3.7. Насколько нам известно, в термофильных условиях (при 50-60 °С) нитрификация не происходит.[ ...]

Индекс «А» относится к нитрифицирующим бактериям, индекс «общ» - к общей биомассе.[ ...]

Хв,А,1 = 0 (очень немногие нитрифицирующие бактерии в сточных водах могут достигать концентрации 0,1-1 г/м3).[ ...]

В отличие от большинства нитрифицирующих бактерий, а также некоторых тионовых бактерий, все известные представители водородных бактерий хорошо растут на органических средах в отсутствие молекулярного водорода. При этом органические соединения служат для них энергетическими субстратами и основными источниками углерода.[ ...]

Данные относительно таких нитрифицирующих бактерий, как Nitrospina gracilis и Nitrococcus mobilis, пока весьма ограниченны. По имеющимся описаниям, клетки N. gracilis палочковидные (0,3-0,4 X 2,7-6,5 мкм), но обнаружены и сферические формы. Бактерии неподвижны. Напротив, N. mobilis обладает подвижностью. Клетки его округлые, диаметром около 1,5 мкм, с одним-двумя жгутиками.[ ...]

На рис. 11.4 показаны изменения фракции нитрифицирующих бактерий в двух пилотных установках за год. Эти изменения в основном являются результатом изменения состава подаваемых на обработку стоков и ингибирования нитрифицирующих бактерий.[ ...]

Хемосинтез осуществляется бесцветными бактериями. Процесс хемосинтеза был открыт в 1888 г. знаменитым микробиологом С. Н. Виноградским у нитрифицирующих бактерий. Нитрифицирующая бактерия Nitrosomonas окисляет NH3 в азотистую кислоту.[ ...]

Эти совпадения в развитии аэробных целлюлозоразлагающих и нитрифицирующих бактерий, вероятно, не случайны. В последние годы некоторые ученые (Е. Ф. Березова) занимаются вопросом о взаимоотношениях нитрифицирующих » целлюлозоразлагающих бактерий и имеют данные о способности целлюлозоразлагающих бактерий к денитрификации. В будущем необходимо более детально заняться изучением процессов нитрификации и разложения клетчатки в почвах вырубок.[ ...]

В каждом грамме ила примерно содержится: а) от 100 тыс. до 1 млн. бактерий, восстанавливающих сульфаты; б) от 10 до 100 тыс. тионовых бактерий; в) около 1000 нитрифицирующих бактерий; г) от 10 до 100 тыс. денитрифицирующих бактерий; д) примерно по 100 анаэробных и аэробных разрушителей клетчатки.[ ...]

Процессы окисления аммиака и азотистой кислоты называются нитрификацией, а бактерии - нитрифицирующими или нитрифика-торами. Для нормального протекания процесса нитрификации необходимо определенное значение pH. Первая стадия имеет оптимум pH 8,5, а вторая - 8,3-9,3. Образующиеся при нитрификации азотистая и азотная кислоты могут вызывать разрушение подводных бетонных сооружений.[ ...]

В заключение следует отметить, что результаты опытов по определению токсичности для сапрофитных и нитрифицирующих бактерий какого-либо вещества, входящего в состав промышленных сточных вод, являются исходным материалом при проведении исследований по установлению его ПДК. для биохимической оценки.[ ...]

В работе лесной опытной станции были случаи, когда в гумусе удавалось вызвать нитрификацию прививкой почвы нитрифицирующими бактериями. Лесные растения после такой прививки начинали лучше развиваться, образуя хорошо развитую корневую систему. Конечно, вызвать процесс нитрификации прививкой нитратных бактерий можно не у всякой почвы, а лишь у такой, где условия для этого процесса складываются более или менее благоприятно, а сами бактерии еще отсутствуют.[ ...]

Аммиак находится в природных водах в основном в виде иона аммония- ЫН "; постепенно он окисляется в результате нитрифицирующего действия бактерий в нитритный - N0 , а затем нитратный - N0 ионы. Образуется аммиак главным образом при биохимических процессах, протекающих при участии бактерий и ферментов, обусловливающих гидролитическое расщепление конечного продукта распада белковых веществ - аминокислот. При неполном разложении белковых веществ аммониевая группа остается в составе сложных соединений, находящихся в коллоидном состоянии (альбуминоидный азот). Частично МН -ион может образоваться и при восстановлении нитратов и нитритов в болотистых водах, содержащих большое количество гуматов; эти же ионы могут восстанавливаться сероводородом, закисным железом и др. Содержание аммиака в природных водах обычно не превышает десятых долей миллиграмма (иногда достигает 1 мг) в литре; в редких случаях, при наличии биологических загрязнений, концентрация его выше.[ ...]

С. Н. Виноградский сыграл большую роль в развитии микробиологии. Им были изучены серобактерии (1887), железобактерии (1888) и нитрифицирующие бактерии (1890), исследования которых дали результаты важного научного значения. Эти бактерии обладали способностью развиваться на средах, не содержащих органических веществ, и синтезировать составные части своего тела за счет углерода угольной кислоты. Необходимую энергию эти бактерии получают за счет биохимических процессов, протекающих при окислении азота аммонийных солей в нитриты и нитраты, или за счет окисления двухвалентного железа в трехвалентное. Такой своеобразный процесс синтеза органического вещества из угольной кислоты и воды называется хемосинтезом. Это явилось крупнейшим открытием в области физиологии микроорганизмов.[ ...]

Среди азотсодержащих загрязнений в сточных водах аммиак- один из наиболее опасных. Он является главным источником питания для нитрифицирующих бактерий; увеличивая pH, он способствует жизнедеятельности последних. При биологическом окислении аммиака расходуется наибольшее количество кислорода. Так, по данным , расход кислорода составляет 4,57 кг/кг аммиака, 1,14 кг/кг нитритов и 2,67 кг/кг углеводородов.[ ...]

Это наиболее часто используемый подход, отличительной особенностью которого является следующее: в нем не учитывается ни содержание аммония в стоке, ни концентрация нитрифицирующих бактерий в иле.[ ...]

При аэробном окислении эффект очистки достигает 95-98 . Очистка органически загрязненных сточных вод заканчивается нитрификацией и денитрификацией под воздействием специальных бактерий. Нитрификация заключается в том, что ашюнийные соли, образующиеся в сточных водах, в результате жизнедеятельности нитрифицирующих бактерий окисляются сначала до нитритов, а затем до нитратов.[ ...]

Один из модифицированных способов проектирования основан на таком параметре, как возраст аэробного ила. В данном случае в центре внимания находятся условия, необходимые для развития нитрифицирующих бактерий в реакторе. Однако по-прежнему основными параметрами для проектирования являются содержание органического вещества в сточной воде и общая масса ила.[ ...]

На практике нитрификацию осуществляет очень ограниченная группа автотрофных микроорганизмов. Процесс проходит в два этапа. На первом этапе аммоний окисляется до нитрита под действием бактерий, часто называемых №(;гозотопаз. Затем нитрит окисляется до нитрата под действием другой группы бактерий, часто называемых 1>ШгоЬас1ег. В процессах очистки стоков участвует значительное количество различных нитрифицирующих микроорганизмов. Однако те нитрифицирующие бактерии, которые были идентифицированы с помощью ДНК-зондов, по-видимому, не слишком сильно отличаются по своей активности от известных бактерий Г гозотопаз и 1ЧИ;гоЬа;ег. Таким образом, с инженерной точки зрения нитрификацию можно рассматривать как двухстадийный процесс, с хорошо известной стехиометрией и кинетикой, в котором задействованы две группы бактерий.[ ...]

Концентрацию активного ила можно измерять в кгВВ/м3, кг БВБ/м3 или кг ХПК(Б)/м3. В каждом случае следует указывать размерность. Под БВБ, например, может подразумеваться общее БВБ в иле, либо содержание нитрифицирующих бактерий в иле, измеренное в единицах БВБ, либо содержание денитрифицирующих бактерий и т. д. Однако, если Х2 - это концентрация активной биомассы (живые бактерии), то соответствующая скорость реакции должна иметь в знаменателе ту же размерность.[ ...]

Вероятно, наиболее распространенной проблемой, связанной с очисткой бытовых сточных вод, является чрезмерная аэрация, приводящая к вспуханию активного ила. Когда сооружение работает при расчетной нагрузке, нитрифицирующие бактерии в аэротенке могут превращать азот аммиака в нитраты. Во время последующего отстаивания во вторичном отстойнике нитраты могут служить источником кислорода в анаэробных условиях; при этом выделяется азот, приводящий к всплыванию хлопьев активного ила. Наилучшее решение этой проблемы - увеличение сброса ила, приводящее к сокращению популяций нитрифицирующих бактерий, и уменьшение подачи воздуха для снижения концентрации растворенного кислорода при условии, что эти меры контроля не повлекут за собой уменьшения эффективности снижения ВПК.[ ...]

Микробиологические исследования свидетельствовали о том, что данная технология биоочистки нефтешлама приводила к появлению и дальнейшему увеличению численности аэробных целлюлозоразрушающих микроорганизмов и нитрифицирующих бактерий. Известно, что аэробные целлюлозоразрушающие микроорганизмы и нитрифицирующие бактерии наиболее чувствительны к загрязнению почвы нефтью и длительное время испытывают ее угнетающее воздействие, отвечая на это уменьшением численности микробных клеток (Исмаилов, 1968). Наблюдающийся прирост численности аэробных целлюлозоразрушающих микроорганизмов и нитрифицирующих бактерий является дополнительным свидетельством того, что происходила очистка твердого нефтешлама от нефти и нефтепродуктов.[ ...]

Судьба адсорбированных почвой микробов может быть двоякой: они или выживают и входят в состав постоянного микробного комплекса в качестве деятельных участников микробиальных процессов, или отмирают. Основное количество бактерий, адсорбированных почвой, относится к сапрофитам. После того, как пройдет начальная фаза минерализации органического вещества и начнется процесс нитрификации, в активном почвенном слое интенсивно развиваются прототрофы, главным образом нитрификаторы. Количество нитрифицирующих бактерий на полях фильтрации в 100 раз больше, чем в обычной окультуренной почве.[ ...]

Азотсодержащие вещества (белки, например) подвергаются процессу аммонификации, связанному с образованием аммиака, а далее - солей аммония, доступных в ионной форме для ассимиляции растениями. Однако часть аммиака под воздействием нитрифицирующих бактерий подвергается нитрификации, т. е. окислению сначала до азотистой, далее - азотной кислоты, а далее - при взаимодействии последней с основаниями почвы - происходит образование солей азотной кислоты. В каждом процессе участвует особая группа бактерий. В анаэробных условиях соли азотной кислоты подвергаются денитрификации с образованием свободного азота.[ ...]

Более сложным является круговорот азота (рис. 218), самым большим резервуаром которого служит атмосфера (около 80%). Поскольку большинство растений и животных не может использовать атмосферный азот (N3), то он конвертируется почвенными азот-фиксирущими бактериями, корневой системой бобовых растений и цианобактериями в нитриты (М02), а затем в нитраты (N0,). Этот процесс получил название нитрификации. Растения восстанавливают нитраты, т. е. усваивают азот и синтезируют белки. Круговорот азота далее заключается в том, что почвенные микроорганизмы разрушают животные отходы и остатки мертвых организмов, в результате чего освобождается аммоний, который конвертируется нитрифицирующими бактериями в растворимые соли нитратов, используемые в производстве белков в растениях. В результате поедания растений травоядными животными растительные белки в их организме превращаются в животные.[ ...]

При проведении экспериментов применяли микробиологические методы исследований: определение количества клеток чашечным методом Коха; определение микробной биомассы в жидкой минеральной среде с помощью мембранных фильтров; определение количества нитрифицирующих бактерий и аэробных целлюлозоразрушающих микроорганизмов общепринятыми методами путем высева на соответствующие среды (среда Виноградского и Гетчинсо-на).[ ...]

Длительное воздействие нефти на почву приводит к изменениям микробиологических свойств почвы. Появляются специализированные формы микроорганизмов, способные окислять твердые парафины, газообразные углеводороды, ароматические углеводороды; это - бактерии родов Arthrobacter, Bacillus, Brevibacterium, Nocardia, Pseudomonas, Rhodococcus, спорогенные дрожжи родов Candida, Cryptococcus, Rhodo-torula, Rhodosporidium, SporoboJomyces, Totulopsis, Trichosporon. Нефтяное загрязнение влияет на изменение численности актиномицетов, грибов, причем наименее чувствительны грибы Rhizopus nigricans, Fusarium moniliforme, Aspergillus flavus и A. ustus. Чувствительными к воздействию нефти являются нитрифицирующие бактерии. В присутствии значительных количеств нефти подавляется развитие целлюлозолитических микроорганизмов. Высокую чувствительность к нефти проявляют зеленые и желтозеленые водоросли.[ ...]

Еще в первых работах с нитрификатором Виноградский отметил, что для их роста неблагоприятно присутствие в среде органических веществ, таких, как пептон, глюкоза, мочевина, глицерин и др. Отрицательное действие органических веществ на хемоавтотрофные нитрифицирующие бактерии неоднократно отмечалось и в дальнейшем. Сложилось даже мнение, что эти микроорганизмы вообще не способны использовать экзогенные органические соединения. Поэтому их стали называть «облигатными автотрофами». Однако в последнее время показано, что использовать некоторые органические соединения эти бактерии способны, но возможности их ограничены. Так, отмечено стимулирующее действие на рост Nitro-bacter в присутствии нитрита дрожжевого автолизата, пиридоксина, глутамата и серина, если они в низкой концентрации вносятся в среду. Известно, кроме того, что Nitrobacter медленно, но окисляет формиат. Включение 14С из ацетата, пирувата, сукцината и некоторых аминокислот, преимущественно в белковую фракцию, обнаружено при добавлении этих субстратов к суспензиям клеток Nitrosomonas europaea. Ограниченная ассимиляция глюкозы, пирувата, глутамата и аланина установлена для Nitrosocy-stis oceanus. Есть данные об использовании 14С-ацетата Nitrosolobus multiformis.[ ...]

Модель применяли к системе из четырех последовательно расположенных реакторов идеального перемешивания, обрабатывающих коммунальные стоки . При этом предполагалось, что биопленка толщиной 3 мм равномерно распределена по всем четырем реакторам. В первом реакторе нитрификации не происходит, поскольку нитрифицирующие бактерии вытесняются гетеротрофными организмами. В последующих реакторах нитрифицирующие бактерии могут конкурировать с гетеротрофными организмами, и в этих реакторах нитрификация происходит с невысокими скоростями, которые можно рассчитать. Расчетное пространственное распределение гетеротрофных и нитрифицирующих бактерий представлено на рис. 11.1. Обозначены пространственные скорости реакции.[ ...]

Выщелоченные черноземы занимают 14% общей площади Республики Башкортостан. Богатство почв органическими веществами в сочетании с механическим составом обеспечивают высокую, максимальную гигроскопичность. Отмечается сравнительно высокое содержание кремнезема и серы и несколько пониженное - кальция, натрия, магния. Отношение С;Ы указывает на обогащенность гумуса азотом . Выщелоченные черноземы недостаточно обеспечены подвижными формами марганца, кобальта, молибдена, цинка и меди. Они отличаются высокой микробиологической активностью, в составе их преобладают спорообразуюшие бактерии, участвующие в процессах минерализации органических веществ. Здесь также широко распространены нитрифицирующее и а?отфлксирующие бактерии .

Фильтрация и цихлидный аквариум. Часть 1.
Евгений Грановский

Этот материал, замысленный еще в стародавние времена, до создания этого сайта, оказался для меня настоящей ловушкой. Активная позиция на интернет-форумах требовала каждый раз писать слишком много слов, хотелось скомпоновать и систематизировать информацию, чтобы потом просто ссылаться. На деле же это означало новый уровень погружения в тусклый мир патрубков и губок вместо того, чтобы писать о диковинных тропических рыбах и далеких биотопах. И, в итоге, я вовсе перестал что-либо писать. Материал наверное бы так и остался у меня в компьютере, если бы Сергей Аникштейн не сподвиг меня довести работу до какого-то более или менее читаемого состояния и, собравшись с духом, так опубликовать. Текст, несмотря то, что в него добавлен ряд новых параграфов, изрядно сырой. Кое-какие моменты мне и самому по прошествии лет кажутся спорными или, как минимум, требующими дополнительной проверки. Впрочем, аквариумистика – это не та область, где может и должно быть единственно правильное мнение, и подчас противоположные решения приводят в нашем деле к одинаково хорошему результату. В любом случае, думаю, что представленный материал окажется хорошим отправным пунктом для аквариумиста, который хочет разобраться в этих вопросах. Но самое главное здесь – это не впасть в излишний технофетишизм, ибо на свете существует еще очень много всего, гораздо более интересного и занимательного, чем химические реакции, фильтры и помпы.

* * *

В современной аквариумистике фильтры являются одним из важнейших средств жизнеобеспечения. Аквариум - замкнутое биологическое пространство, в котором происходит постоянное накопление органических остатков: рыбы производят выделения, которые загрязняют воду; плюс несъеденный корм, помертвевшие части растений и т.д. В природных водоемах концентрация отходов в воде достаточно стабильна, поскольку часть их перерабатывается в минеральные вещества и ассимилируется растениями, а другая часть выносится вместе с водными потоками. В аквариуме плотность посадки рыб существенно превышает природную, поэтому продукты обмена и их неорганические производные могут оказывать негативное воздействие на его обитателей.

Основными способами удаления из аквариума излишков минеральных и органических остатков и налаживания в нем приемлемых условий жизни рыб является фильтрация, чистка, подмены воды и применение сорбирующей химии.

Наряду с навыками обращения с фильтрующими системами, помпами, сифонами и абсорбентами аквариумист должен обладать также определенным объемом теоретических знаний. Неотъемлемой частью современной аквариумной науки является так называемый "азотный цикл". Если вы откроете старые книжки, то не найдете там ни слова ни о биофильтрах, ни об азотном цикле. Первого тогда просто не существовало, второе же протекало само собою, о чем аквариумисты "старой школы" лишь смутно догадывались говоря об неком "биологическом равновесии", которое наступает само собой через несколько недель после запуска. То, как правило, были густо заросшие аквариумы с нейтральной или подкисленной водой, населенные "харацинкой" или "живородкой", где живые растения достаточно энергично поглощали ядовитые аммонийные соединения, а если те и присутствовали в незначительных остаточных дозах, то преимущественно в виде относительно безопасных ионов аммония NH 4 +. Более того, в "голландские аквариумы", с большим количеством растений и малым числом рыб, нитраты вносились искусственно!

Увлечение цихлидами, захватившее аквариумистику начиная с 1970-х годов, потребовало от аквариумистов намного более углубленных знаний в области биофильтрации. Хотя до того этот сегмент был уже в значительной мере освоен морскими аквариумистами. Именно они первыми столкнулись с проблемой ядовитых нитрогенов и стали разрабатывать соответствующие системы водоочистки. Вслед за "моряками" и цихлидоводами на эту проблему обратили и другие аквариумисты, а производство аквариумных фильтров превратилось в целую отрасль аквариумной индустрии.

В настоящем материале обобщены и систематизированы личный практический опыт и информация, почерпнутая в различных источниках. Их список приведен в конце. Хочу поблагодарить всех, чьи публикации и высказывания на аквафорумах помогли мне в составлении этого материала.

Азотный цикл, нитрификация

Не съеденный корм и выделенные с экскрементами не потребленные рыбой белки - это основные поставщики органических соединений в воде, в которой начинается цикл биологических превращений, осуществляемых различными микроорганизмами. На первом этапе этого цикла сложные азотсодержащие органические соединения утилизируются до простых неорганических - так называемая минерализация. Азот - один из основных элементов, необходимых для животных и растений. Он входит в животные и растительные белки. В результате разложения экскрементов рыб, остатков корма и растений, погибших организмов образуется аммиак NH 3 (ammonia). Аммиак обладает способностью взаимодействовать с ионами водорода H + , находящимися в воде, или с молекулами воды, образуя ионы аммония NH 4 + (ammonium):

NH 3 + H + = NH 4 +

2NH 3 + 3O 2 = 2NO 2 - + 2H + + 2H 2 O,

либо 2NH 4 + + 3O 2 = 2NO 2 - + 4H + + 2H 2 O,

а затем в нитрат-ионы (с буквой "а") NO 3 - .

2NO 2 - + O 2 = 2NO 3 - .

Процессы окисления аммиака и ионов аммония до нитрит-ионов, а затем до нитрат-ионов называются нитрификацией. Эти процессы протекают в аэробной (т.е. богатой кислородом) среде под действием бактерий-нитрификаторов, существующих в аквариуме. Практический смысл нитрификации заключается в переводе соединений азота из очень токсичных форм (аммиак, нитрит) в малотоксичную (нитрат). Нитраты - тоже вредны, однако не настолько, как предыдущие соединения азота. Но на этом цикл азота не прекращается. Существует и обратный - восстановительный процесс, называемый денитрификацией, который мы, в большинстве своем, на настоящий момент не используем. Потому в аквариумной практике азотный цикл чаще всего рассматривается в только в аспекте нитрификации. В этом аспекте современная аквариумистика фактически построена на принципе "пролонгированной протоки", т.е. нитрат выводится из аквариума посредством замены загрязненной воды на свежую. Также существенную роль играют живые растения, поглощающие нитраты. В цихлидом аквариуме, где растительности мало или она вовсе отсутствует, биологическое равновесие биосистемы и здоровье рыб во многом зависит от технического оснащения и регулярности обслуживания. Хорошая аэрация и фильтрация является обязательным условием нормального функционирования такой системы, а поддержание концентрации нитратов на безопасном уровне осуществляется посредством интенсивных вливаний свежей воды. Несмотря на существование ряда альтернативных решений (включая биологические методы денитрификации, о которых будет рассказано в третьей части статьи), ведра и шланги являются неотъемлемым аквариумным инвентарем.

Токсичность азотных соединений

Сам по себе газообразный азот, молекулы которого состоят из двух атомов N 2 , химически и биологически инертен и практически безвреден. А вот азотные соединения, накапливающиеся в аквариуме, способны нанести вред его обитателям. Схематически изменение концентраций соединений азота в аквариуме в процессе нитрификации и изображено на графике.

Изменение концентраций соединений азота в аквариуме

Согласно "Перечню рыбохозяйственных нормативов предельно допустимых концентраций (ПДК) и ориентировочно безопасного уровня воздействия (ОБУВ) вредных веществ для воды водных объектов, имеющих рыбохозяйственное значение" (М.: Изд. ВНИРО, 1999), ПДК азотных соединений для рыб:
аммиак - 0,05 мг/л;
аммоний - 0,5 мг/л;
нитрит - 0,08 мг/л (значение нитритно-азотной концентрации);
нитрат - 40 мг/л.

Хотя практика показывает, что аквариумные рыбы кратковременно способны переносить значительно более высокие дозы нитрогенов, эти значения не следует превышать.

Аммиак является сильно токсичным соединением. Он легко попадает в кровь и внутренние органы рыбы, накапливается там и потом выводится очень долго, вплоть до недель, т.е. рыба единожды отравившаяся аммиаком может через какое-то время погибнуть, причем без всяких внешних признаков. Отравления аммиаком также делает рыб подверженными стрессу и ослабляет их сопротивляемость болезням. Летальный уровень неионизированного аммиака составляет примерно 0,2–0,5 мг/л для различных видов рыб. Ионы аммония тоже токсичны, но в меньшей степени. Токсичность аммиака уменьшается в соленой воде. Соотношение концентраций NH 3 и NH 4 + в воде также зависит от ее кислотности и температуры: в кислой и холодной воде аммиак практически отсутствует, в щелочной и теплой среде его концентрация возрастает. Поэтому в аквариумной литературе советуют подкислять воду для предотвращения отравления рыб. Понижение pH действительно приводит к снижению токсичности аммиака, однако при этом активность нитрифицирующих бактерий, перерабатывающих аммиак падает. А при pH ниже 5, их жизнедеятельность практически прекращается.

Проблема усугубляется тем, что имеющиеся в нашем распоряжение тесты показывают общую концентрацию аммонийных соединений, не отделяя аммиак от аммония. Их процентное соотношение можно определить, используя специальные таблицы, исходя из показателей pH и температуры воды. Но лучше всего устроить фильтрацию так, чтобы тест показывал нулевое значение.

Существующее однако мнение, что при значениях рН=7 и менее риск вероятность аммиачного отравления является практически нулевым. В подтверждение чего указывается, что в "доцихлидную" эпоху, когда аквариумисты содержали преимущественно тропических "кисловодных" рыб, случаи отравлений аммиаком были очень редки, и эта проблема возникла только с наступлением "моды" на африканских цихлид, требующих щелочной воды. На мой взгляд, это неверная аргументация, т.к она не принимает во внимание тот существенный момент, что в прежние времена все аквариумы, в т.ч. выростные, в обязательном порядке содержали растения, которые и выполняли роль естественного биофильтра и аэратора, причем довольно успешно. Тем более, как выше указано, ионы аммония тоже не безвредны и при накапливании могут вызвать длительное отравление.

Отдельной проблемой является наличие аммонийных соединений (далее по тексту мы будем называть их обобщенно "аммиак") в водопроводной воде - в период осенних дождей и весеннего паводка концентрация может достигать 0,5–1 мг/л. Более детально это рассмотрено в статье " ". Причем здесь аммиак опасен даже не столько своей абсолютной концентрацией, сколько резким скачком его содержания в аквариуме при обильной подмене воды.

Нитрит также ядовит. Длительное пребывание рыб в воде с нитритно-азотной концентрацией более 0,1 мг/л (или общей нитритно-ионовой концентрацией более 0,33 мг/л) нежелательно, летальными могут оказаться дозы от 1 мг/л.

Примечание: существуют две измерительные шкалы содержания нитрита: общей нитритно-ионовой концентрации (NO 2 -), т.е. содержание азота и кислорода; и нитритно-азотной концентрации (NO 2 – N), т.е. содержание только азота в нитрит-ионе. Коэффициент соотношения этих показателей равен 3,3, то есть, зная одно значение, можно вычислить другое. В книгах обычно указывается показатель нитритно-азотной концентрации, а вот в аквариумных тестах - как правило общей нитритно-ионовой.

Хочу еще раз подчеркнуть - в нормально функционирующем аквариуме содержание аммиака и нитрита должно быть нулевым.

Нитраты - значительно менее токсичны, чем аммиак и нитриты. Безопасной для большинства видов рыб считается концентрация ионов NO 3 - до 50 мг/л. Хотя известны случаи аквариумов с содержанием нитрата до 400 мг/л (!!!), что ни в коем случае не должно рассматриваться как рекомендация к действию. В тоже время, существуют виды цихлид, например, у дикарей Uaru fernandezyepezi самочувствие ухудшается уже при концентрации 10-20 мг/л. Однако даже если мы не видим очевидных признаков отравления или ухудшения самочувствия, рыба внешне здорова и нерестится, в долговременном аспекте нитраты являются одной из главных причин гексамитоза и др. заболеваний у проблемных видов и возрастных рыб и оказывают воздействие даже более вредное, чем неправильное кормление, хотя негативный их эффект проявляется не сразу. Даже в относительно небольших и формально "безопасных" концентрациях нитраты незаметно, но верно укорачивают срок жизни нашим питомцам. Также есть основания предположить наличие токсичного "кумулятивного эффекта" при сочетании с нитратов с нитритным или аммонийным фоном (при недостаточной биофильтрации). Поэтому и для сравнительно неприхотливых видов, лучше установить такой режим подмен воды, чтобы концентрация NO 3 - была минимальной. Следует также избегать резких изменений концентрации нитратов не только в большую сторону, но и в меньшую, в частности, при пересадке рыб в другую емкость или при больших подменах воды.

Симптомы отравления рыб азотными соединениями достаточно хорошо описаны в литературе. В частности, об этом можно прочесть в статье "Состав аквариумной воды: основные проблемы" , размещенной на веб-сайте vitawater.ru. Оттуда же можно узнать, как с помощью специальных препаратов, как фирменных, так и "народных" (соль, марганцовка, метиленовая синь) улучшить самочувствие рыбок. Однако если изначально сделать все по уму: оснастить аквариум хорошим фильтрационным оборудованием и обеспечить должный режим обслуживания, т.е. устранить причину "заболевания", не будет нужды бороться с его симптомами.

Виды фильтрации

Основное назначение аквариумных фильтров - очистка воды, удаление из нее нежелательных составляющих (органических и минеральных частиц, молекул, ионов, микроорганизмов). Фильтрацию можно разделить на три основных вида:

Механическая;
- биологическая;
- химическая.

Механическая фильтрация - улавливание взвешенных в воде частиц. При механической фильтрации поток воды проходит через какой-либо мелкопористый материал, на котором задерживаются сравнительно крупные частички грязи и аквариумного мусора. В качестве фильтрующего субстрата обычно применяются синтетические губки и мочалки, специальный поролон, синтепон и т.д.

Теоретически, эффективность очистки возрастает при уменьшении размера частиц фильтрующего материала или диаметра проходных каналов. Однако это уменьшение возможно лишь до определенных пределов, поскольку при этом начинает возрастать сопротивление потоку жидкости и снижается производительность фильтра. Считается, что лучше применять фильтрующие элементы с различной величиной проходных каналов. Вода, последовательно минуя слои со все уменьшающимися каналами, будет равномерно очищаться во всем объеме фильтра. Во внешних и в некоторых видах внутренних фильтров используется многослойный фильтрующий элемент (керамические кольца - крупнопористые и мелкопористые губки - синтепон). При работе механического фильтра в нем происходит накопление отфильтрованного материала, поэтому необходимо регулярно проводить промывку фильтрующего элемента.

К механической фильтрации можно и отнести и регулярную чистку дна сифоном (сифонка грунта) при подменах воды.

Биологическая фильтрация - многостадийный, многоступенчатый процесс, осуществляемый аммонифицирующими и нитрифицирующими, по разложению органики и преобразованию сильнотоксичных аммиака, аммония и нитрита в малотоксичный нитрат (а при полном цикле - в газообразные азот). Этот процесс может протекать естественным образом непосредственно в аквариуме, но для получения хорошего результата требует специального устройства - биофильтра.

Биологическая и механическая фильтрация тесно между собой связаны. Во-первых, потому, что один и тот же фильтр может выполнять роль и механического, и биологического. Во-вторых, тем, что задача очистки аквариума от органических нечистот решается одновременно как в биологически, посредством нитрификации, так и механически, т.е непосредственно удалением грязи из аквариума. И таким образом сильная механическая фильтрация ослабляет нагрузку, ложащуюся на биофильтр, и наоборот.

Химическая фильтрация , под которой в аквариумной практике понимают прежде всего сорбцию , является специфичным видом. С помощью химических фильтров из аквариумной (или вновь заливаемой) воды удаляются вредные органические и неорганические вещества, а также могут изменяться параметры воды и вноситься в нее полезные вещества. В зависимости от характера сорбции различают адсорбенты - тела, поглощающие вещество на своей (обычно сильно развитой) поверхности, и химические поглотители, которые связывают поглощаемое вещество, вступая с ним в химическое взаимодействие. Отдельную группу составляют ионообменные сорбенты, поглощающие из растворов ионы одного типа с выделением в раствор эквивалентного количества ионов другого типа. Химическая фильтрация наиболее распространена и популярна с помощью активированного угля в качестве адсорбента. Применяется и ряд других химических наполнителей. Это минералы из группы цеолитов, синтетические ионообменные смолы, а также торф. Цеолиты и ионообменные смолы поглощают аммиак, нитраты, фосфаты и др. и вместо них выделяют безвредные ионы натрия, хлора, сульфата и т.д. Торф слегка подкисляет воду и вносит в нее различные биологически активные вещества. К химической фильтрации можно отнести и пеноотделительные колонки, которые удаляют органические молекулы из воды прежде, чем они будут разложены с выделением аммиака. Озонаторы тоже в какой-то степени выполняют химическую фильтрацию путем окисления органики.

Кроме фильтрации, в аквариумной практике применяется также стерилизация воды как метод ее очистки. Способами стерилизации являются озонирование и ультрафиолетовое облучение.

Нитрифицирующие бактерии

Процесс нитрификации - это процесс окисления, основную роль в котором, естественно, играет кислород. Однако этот процесс происходил бы намного медленнее, не будь в аквариуме множества микроорганизмов, принимающих в нем участие. Эти микроорганизмы известны также под собирательным названием "активный ил ".

Предварительную работу делают минерализаторы, превращающие органику в аммиак. Такой способностью обладают многие микроскопические водные обитатели. Поэтому, в принципе, набор видов может быть свой для каждого конкретного аквариума. В частности, это бактерии Achromobacter, Micrococcus, Flavobacterium, Paracoccus и др. Их колонии образуются стадийно. Одни виды вытесняют другие. Помутнение воды в недавно запущенном аквариуме (т.н. "бактериальная муть") является как раз проявлением взрывообразного размножения одних микроорганизмов, чаще - инфузорий, с постепенной заменой их другими и/или падением размера популяции.

Каждая из стадий азотного цикла осуществляется своими бактериями. Аммиак-окисляющие бактерии Nitrosococcus и Nitrosomonas осуществляют процесс NH 3 (NH 4 +) => NO 2 - , а нитрит-окисляющие Nitraspira и Nitrobacter - процесс NO 2 - => NO 3 - .

Процесс заселения аквариума полезными бактериями происходит постепенно. Для успешной работы им требуется определенные условия: пища (аммиак и нитриты), кислород, приемлемая гидрохимия, температура и субстрат, где они будут селиться. Согласно исследованиям оптимальные условия для развития бактерий Nitraspira spp.: концентрация нитритов 0,35 mM, pH 7,6–8,0, температура 39°C. Последнее, естественно, это не означает необходимости разогревать аквариум до столь экстремальной температуры, для большинства аквариумных рыб она является смертельной. Нитрификаторы будут замечательно работать и при 22–28°С. Следует также помнить, что при повышенных значениях температуры и pH возрастает процентное содержание неионизированного аммиака.

Основным местом жительства (субстратом) для аммонифицирующих и нитрифицирующих бактерий являются фильтры, особенно внешние, с внушительным объемом и большой площадью поверхности различных наполнителей. Конечно, эти бактерии живут и в толще воды, но там их значительно меньше. В принципе, в качестве субстрата подходит любая поверхность, но она должна иметь достаточно большую площадь. Голых стенок аквариума для создания работоспособной популяции недостаточно. В аквариумах, лишенных биологического фильтра, в роли субстрата, выступает грунт, однако в нем ощущается дефицит другого жизненно важного компонента нитрификации - кислорода. Поэтому проточный биофильтр является оптимальным для заселения нитрификаторами. См. также статью " ".

Хотя нитрифицирующие бактерии присутствуют повсюду, даже в хлорированной водопроводной воде и в воздухе (отдельные клетки или микроколонии), в свежезапущенном аквариуме их катастрофически мало. Размножаются бактерии быстро - удвоение популяции происходит за 12–32 часа. Однако, согласно исследованиям аквариумов и биофильтров, для налаживания нитрификации требуется от 12 до 22 дней.

Вначале в аквариуме нет нитритов, только аммиак и аммоний, и нарождаются одни аммиак-окисляющие бактерии. По мере появления нитритов в действие включаются нитрит-окисляющие бактерии. Причем есть основания считать, что колония нитрит-окисляющих бактерий прихотливее, рост ее более медленный, и ей может быть причинен больший урон, чем первой колонии при том же воздействии. Например, известно, что Nitraspira могут подавляться даже избытками аммиака. А если учесть, что пищу для их поставляет первая колония, то неудивительно почему задержка в переработке нитритов в новом аквариуме может быть долгой. А потом наоборот исчерпывается аммиак, и аммиак-окисляющие бактерии начинают голодать и сокращать популяцию, зато теперь много пищи для нитрит-окисляющих бактерий... Таким образом, получаются два взаимосвязанных, но разбалансированных цикла со своими пиками и спадами, и задача биофильтрации состоит в том, чтобы эти циклы синхронизировать и развить, и добившись баланса обеих групп бактерий, гибко реагировать на любые изменения аквариумной биохимии.

"Опрокидывание" биофильтра

При неблагоприятных условиях, например, отсутствие питания или достаточного количества кислорода, бактерии переходят в т.н. инактивное состояние ("спячка"), когда минимальный энергетический обмен поддерживается для обеспечения основных функций клетки. При возобновлении подходящих условий бактерия "просыпается". Но если инактивный период длится слишком долго, наступает смерть и распад бактериальной клетки.

Особенно критичны для колоний нитрифицирующих бактерий в биофильтре длительные отключения электричества и сильное загрязнение субстрата с образованием в нем застойных анаэробных зон. Причем опасно не столько само прекращение процесса нитрификации, сколько то, что на их месте поселяются другие, гетеротрофные бактерии, и в анаэробной (безкислородной) среде начинается противоположный процесс - . И при этом велика вероятность, что он пойдет по "неправильным" сценариям - с образованием таких таких ядовитых соединений, как сероводород (H 2 S) и метан (CH 4), или остановится на стадии восстановления нитрата в нитрит. И хорошо, если обойдется просто временным помутнением воды, но может обернуться и массовым замором рыбы. Падение производительности (напора воды) фильтра, как правило, свидетельствует о загрязнении субстрата. Если напор упал ниже 30–40% от максимального, фильтр следует промыть и перезапустить заново, иначе это может привести к его биологическому "опрокидыванию". Не следует также отключать фильтр на продолжительное время. Сильно загрязненный фильтр может представлять опасность для обитателей аквариума уже через 2–3 часа простоя; менее загрязненные могут сравнительно легко пережить без притока свежей воды нескольких часов или даже суток. Кроме степени загрязненности фильтра это зависит от многих факторов, в т.ч. объема аквариума (в больших аквариумах биохимия гораздо более стабильна) и плотности посадки рыб. Но лучше лишний раз этим не рисковать.

"Бактериальная муть"

Под этим термином обычно понимается помутнение или побеление воды, нередко сопровождающееся затхлым запахом. Данное явление характерно для аквариумов с неразвитой или нарушенной биофильтрацией, либо случается от переизбытка органики (при перекорме или при перенаселении). Также может быть вызвано большим вливанием свежей воды или использованием "аквахимии". Еще один "верный" способ получить сильное помутнение воды - налить в аквариум некоторую дозу спирта или водки (но об этом чуть позже). "Бактериальная" или, как ее еще называют "инфузорная" муть является проявлением бурного размножения в аквариумной воде одноклеточных организмов, в большинстве своем гетеротрофных, и их конкуренции между собой. Эти процессы Самвел Купалян метко назвал "междоусобными войнами" микроорганизмов. Сама по себе "бактериальная муть" не опасна для рыб, хотя косвенно является признаком неблагоприятной обстановки в аквариуме и внешне представляет собой малоэстетичное зрелище. Но прямой зависимости между мутностью воды и содержанием вредных веществ в аквариуме нет. Растворенные в воде токсичные соединения азота, возникающие в результате отсутствия или нарушения биофильтрации, незаметны для глаза. Возможна ситуация, когда вода помутнела, а тесты на аммиак и нитрит показывают нулевую или очень низкую концентрацию этих веществ. Но может быть и наоборот: вода в аквариуме кристально прозрачная, а нитриты зашкаливают.

В заново запускаемом аквариуме вода может сильно помутнеть на второй-третий день (хрестоматийный, но вовсе не обязательный случай). Если система правильно оборудована и обслуживается, то через несколько дней "бактериальная муть" исчезает сама собой. Когда помутнение возникает в зрелом аквариуме, оно проходит после устранения причины его возникновения. И первое, что я рекомендую сделать, если обнаружилось, что вода "ни с того ни с сего" помутнела - это усилить аэрацию. В качестве радикального способа устранения бактериальной мути нередко советуют УФ-стерелизатор. При прохождении через ультрафиолетовое излучение создающие муть микроорганизмы гибнут, и вода становится прозрачной. Однако следует понимать, что таким образом не устраняется первопричина возникновения мути.

Немного истории

Если вы откроете старые книжки, то прочтете там много интересного и правильного о таких химических показателях воды как PH, электропроводимость и жесткость, а также хитроумных способах их измерения, однако не найдете ни слова ни о биофильтрах, ни об азотном цикле. Первого тогда просто не существовало, второе же характеризовалось неким абстрактным понятием "биологическое равновесие", которое наступает само собой через несколько недель после запуска аквариума. Видовой состав рыб - в основном, "живородка" и "харацинка" - и наличие в аквариумах большого числа живых растений в значительной мере компенсировали эти пробелы в теоретических знаниях и технической оснащенности. Думаю, что серьезное отставание нашей страны в области цихлидоводства было в известной мере обусловлено именно этими "особенностями национальной аквариумистики". Ведь содержание цихлид предъявляет к фильтрации повышенные требования. В более поздних публикациях наших авторитетных аквариумистов необходимость аквариумных фильтров признается. " Современная аквариумистика отвечает на этот вопрос положительно",- декларирует Игорь Иванович Ванюшин в опубликованной в 1999 г. в журнале "Миллион Друзей" статье "Нужна ли в аквариуме фильтрация?" Тогда же в литературе появилось множество руководств по изготовлению самодельных внутренних фильтров из пластиковой бутылки и т.п. "Невозможно себе представить, сколько существует конструкций фильтров,- пишет Игорь Иванович,- более того, почти каждый аквариумист вносит свой вклад, изменяя виденное или создавая что-то оригинальное, свое, в ту пору когда всерьез заинтересуется фильтрацией воды".

Одновременно пришло понимание необходимости регулярных подмен воды с целью устранения из нее нитратов и других вредных веществ. То было удивительное время прозрения, когда аквариумистам открылись причины необъяснимых смертей и заболеваний их питомцев. Первые отечественные биофильтры появились еще в 1980-х годах, причем подчас обладали весьма замысловатыми конструкциями. Недостатками самодельных внешних фильтров, которые в значительной мере сводили на нет их достоинства, были громоздкость и ненадежность. Поэтому отношение к внешним фильтрам, даже несмотря на появление в продаже эргономичных и надежных импортных канистровых фильтров, по-прежнему было настороженным. Мнение И.И. Ванюшина (статья "Покупаем Аквариумы" в журнале "Миллион Друзей" №1.2000) на этот счет достаточно показательно: " Не вникая в детали, все фильтры можно разделить на наружные и внутренние. Какой лучше - судите сами, если свою главную задачу по очистке от мусора и вредных примесей они выполняют примерно одинаково... Наружный фильтр почти не ограничивает собой внутреннего пространства аквариума. Внутри проходят только две трубки - для откачивающей и нагнетающей магистралей, все остальное - снаружи. Этим, пожалуй, и ограничиваются его достоинства" . Серьезным противопоказанием против брендовых канистр была их высокая стоимость, а китайские сильно уступали им по качеству. Поэтому многие аквариумисты-любители отдавали предпочтение широко распространившимся у нас в стране в конце 1990-х годов стаканным внутренним фильтрам, сочетающим в себе стильный дизайн и доступную цену, при этом явно преувеличивая их возможности в отношении биофильтрации, а в профессиональной аквариумистике получили распространение встроенные биофильтры. Еще одной альтернативой и своеобразным этапом становления биофильтрационной техники в России был так называемый эрлифт, состоящий из большой губки, подъемной трубы и аэратора. Этот вид фильтра и сейчас успешно используется в выростных аквариумах.

Рассказ Евгения Цигельницкого: "Никогда не забуду свой первый фильтр - разбирающуюся пополам, щелястую коробочку в полстакана из розово-белого "под мрамор" пластика (из такого делали самые дешевые мыльницы) на сизой, скверно пахнущей присоске, жиденько заполненную какими-то нитками, через неделю ставшими совершенно похожими на сопли. К нему сверху через поганенький резиновый переходник крепился простейший эрлифт из пары стеклянных трубок - потолще и потоньше. А набитые в фильтр нитки "сообразительные мы" (с отцом) заменили на мочалку для посуды. Помню и тот фильтр, и мое детское изумление от того, сколько эта маленькая, убогая штуковина за неделю собирала всякой грязи в моем скромном, чистеньком на взгляд трехведерном аквариуме (полностью нагружая собой целый трескучий компрессор). Продвинутые люди тогда пользовали эрлифты из братской ГДР, мне тоже такой привез после долгого нытья дед аж из Ленинграда. И я стал продвинутым – с нереальной, убойной ГДРовской губкой в трехведернике и переехавшей в ведерный ("школьный") малечник мраморной "мыльницей". Целых два фильтра было - во как! Кстати, эта губка у меня трудилась–служила–кочевала по аквариумам почти пятнадцать лет. До сих пор жалею, что она куда-то делась… То есть - воду в аквариумах люди фильтровали еще при советской власти, но большинство фильтрующих – не делало из этого культа, и никоим образом не заботилось происходящими при этом биохимическими событиями… Грязь собрал - и ладно…"

Денитрификация и денитрифицирующие бактерии

Процесс восстановления нитратов до газообразных оксидов и молекулярного азота называется денитрификацией. Это вторая часть азотного цикла. В пресноводной аквариумистике этот процесс используется крайне редко, но тем не менее несомненно заслуживает рассмотрения. В отличие от нитрификации, где важнейшую роль играет растворенный в воде кислород, процессы денитрификации происходят в среде, лишенной кислорода, или, говоря научным языком, анаэробной. Денитрификация определена как превращение нитрата в азот - безвредный газ, который уходит пузырьками наружу. Между начальным продуктом (нитратом) и конечным продуктом (газообразным азотом) существуют три промежуточных продукта: в порядке их возникновения, это нитрит (NO 2), окись азота (NO) и закись азота (N 2 O). То есть денитрификация (как и нитрификация) - это процесс многоступенчатый, и его промежуточные продукты, и в частности нитрит, токсичны. Если денитрификация происходит не до конца, качество воды становится для рыб много хуже, чем до этого процесса. Существуют и еще два других процесса, которые могут происходить в аквариуме. Это диссимилятивное и ассимилятивное поглощение нитрата. Оба они опасны, т.к. производят аммоний. Фактически это полная противоположность нитрификации - нитрат редуцируется в нитрит, который затем редуцируется в гидроксиламин (NH 2 OH) и затем в аммоний.

За все эти превращения ответственны бактерии. Важное различие между нитрификацией и денитрификацией заключается в видах бактерий, которые участвуют в этих процессах. Нитрификация производится так называемыми автотрофными бактериями. Это означает, что они получают углерод, необходимый для роста, из неорганических веществ, в частности, из углекислого газа. Денитрифицирующие бактерии (Bacillus, Denitrobacillas, Micrococcus, Pseudomonas и др.) являются гетеротрофными, то есть получают углерод из органических источников, как сахароза, глюкоза, спирты, органические кислоты, аминокислоты и др. (существует, впрочем, особый вид фильтра-денитратора, в котором для переработки нитрата в азот используется серные бактерии - автотрофы, см. 3-ю часть статьи). Суть полезного действия бактерий-денитрифаторов в том, что в условиях анаэробной, т.е. крайне бедной кислородом среды, они извлекают необходимый для дыхания кислород из нитрата, при этом редуцируя его. Денитрифицирующие бактерии – это анаэробные бактерии. Хотя, если быть совсем корректным, есть бактерии, которые являются факультативными анаэробами и в зависимости от содержания в среде кислорода способны черпать его как из вне, так и извлекать из нитратов (поэтому, кстати, считается, что приспособление денитрифицирующих бактерий к анаэробным условиям - вторичного происхождения). Но в целом, как об этом пишет Мартин Сандер, "можно исходить из того, что кислород препятствует денитрификации".

Таким образом, для успешного протекания процесса денитрификации нужно соблюдение трех условий: наличие в аквариуме нитратов, бедная кислородом среда и наличие органических углеродосодержащих веществ. Углерод используется бактериями как основное питательное средство, в то время как потребность в кислороде удовлетворяется за счет нитрата. Четвертое условие, о котором позже будет рассказано, - это достаточно низкий окислительно-востановительный (или как его обычно называют, редокс) потенциал.

Реакцию денитрификации в классическом ее виде можно выразить уравнениями:

первая ступень 3NO 3 - + CH 3 OH = 3NO 2 - + CO 2 + 2H 2 O и

вторая ступень 2NO 2 - + CH 3 OH = N 2 + CO 2 + H 2 O + 2OH - .

Как видно из уравнений, нитраты при этом не сразу трансформируются в газообразный азот, а прежде образуются токсичные нитриты. И лишь на второй ступени азот удаляется из цикла путем образования газообразного азота. Добиться, чтобы эти процессы происходили контролируемо, - непростая задача. Во всяком случае, это гораздо сложнее, чем наладить биологическое преобразование аммиака в нитрат. Кроме того, с денитрификацией связано немало заблуждений, в том числе исходящих от аквариумистистов, использующих эти технологии на практике. Процесс денитрификации не всегда происходит безмятежно. Наряду с полезным действием по удалению нитратов, в ходе денитрификационных процессов могут образовываться другие вещества, чрезвычайно вредные - метан (СН 4) и сероводород (H 2 S), поскольку наряду денитрифицирующими бактериями в анаэробные процессы подключаются и другие виды микроорганизмов, в частности метанобразующие археи и сульфатвосстанавливающие бактерии, тоже анаэробы. В частности, такое происходит, при недостатке нитратов, либо очень низком редокс-потенциале. Тогда анаэробная микрофлора начинает удовлетворять потребность в кислороде за счет других кислородосодержащих химических соединений - с выделением сероводорода и метана, оба газа токсичны. Метанобразующие бактерии могут синтезировать метан, используя в качестве энергии реакции окисления углекислого газа (СО 2). В природных водоемах метан является одним из конечных продуктов разложения органических веществ в донной анаэробной зоне и образуется узкоспециализированной группой строгих анаэробов - метанобразующих архей. Сульфатвосстанавливающие бактерии забирают кислород из сульфатов (SO 4 2-). В этом процессе, который называется десульфуризация, возникает сероводород, который известен запахом тухлых яиц. Также выше упомянуты биопроцессы диссимилятивного и ассимилятивного восстановления нитратов до гидроксиламина (NH 2 OH) и затем аммония. Способностью к этому обладают различные бактерии, а также некоторые актиномицеты и грибы. Понятно, что всеми этими процессами, которые также происходят в природе, трудно управлять в аквариуме, стимулируя лишь полезные и препятствуя вредным процессам.

Теперь несколько слов об окислительно-восстановительном потенциале - мере способности химического вещества присоединять электроны (восстанавливаться). Его величина определяет равновесие между восстановительными и окислительными реакциями в воде. Другое название - редокс-потенциал (от англ. redox - reduction-oxidation reaction). Этот показатель связан с уровнем загрязненности аквариумной воды органическими веществами, а также с возрастом аквариума. Недавно запущенный аквариум характеризуется, как правило, высокими значениями редокс потенциала, затем, по мере старения аквариума, его редокс-потенциал снижается. Поддерживать редокс-потенциал на определенном уровне можно путем регулярного ухода за аквариумом, чистки грунта, подмены воды и т.д. Высокий положительный редокс-потенциал (в нормальном аквариуме он составляет 200 – 400 mV (минивольт)) указывает на доминирование окислительных реакций над восстановительными. Отрицательный редокс потенциал указывает на отсутствие кислорода в воде, что смертельно для большинства беспозвоночных. А вот для нормального течения процесса денитрификации окислительно-восстановительный потенциал должен быть отрицательным и удерживаться в пределах примерно от -50 до -250 mV. Таким образом, реакция денитрификации не может происходить непосредственно аквариумной воде, а требует специальных анаэробных зон, которые могут образовываться, например, в грунте или фильтре. Если же окислительно-восстановительный потенциал будет выше, чем -50 mV (но меньше нуля), то процесс денитрификации скорее всего остановится на стадии образования нитритов. А если он упадет ниже -300 mV, то бактерии возьмутся за сульфаты.

Следующая проблема - наличие достаточного количества органического углерода, необходимого для этого виды бактерий. Органических веществ, находящихся в аквариуме, не достаточно для поддержки процесса, поэтому требуется вносить их дополнительно. В выше приведенных уравнениях в качестве органического вещества фигурирует метанол, однако на практике метиловый спирт - яд. Концепция классического углеродного нитратредуктора подразумевает использование лактозы. Еще вариант - этиловый спирт или водка. Кстати, несколько лет назад очень популярной была идея запуска денитрификации посредством внесения в аквариум водки. Правда, отваживались на это не многие, но обсуждали активно. На самом деле, как пишет об этом Дитер Брокманн, эта технология не имеет ничего общего с денитрификацией, то есть расщеплением нитратов для дыхания бактерий, а скорее ближе к ассимиляции и производству биомассы. "Алкоголем, в отличие от денитрифицирующих фильтров, мы стимулируем преимущественно аэробных бактерий и только затем анаэробных бактерий, играющих менее важную роль. Под ассимиляцией подразумевается усвоение нитратов и фосфатов, например, водорослями. Последние используют оба вещества для получения азота и фосфора, необходимых для собственного обмена веществ и, соответственно, жизнеобеспечения и роста. Из этого следует вывод, что усиленный рост водорослей влияет на понижение концентрации фосфатов и нитратов в аквариуме. Раньше этот эффект использовали в водорослевых фильтрах для редукции нитратов. Подливая водку в аквариум, мы тем самым поддерживаем ассимиляцию, стимулируя, правда, не водоросли, а бактерии. Мы предоставляем им источник легко перерабатываемой пищи - этанол в водке. За счет наращивания биомассы уровень содержания фосфатов и нитратов в аквариумной воде снижается. Однако практика показала, что денитрификация может протекать только в субстрате, содержащем анаэробные зоны. И о его наличии тоже надо позаботиться".

И еще. Нужно сбалансировать систему так, чтобы промежуточные продукты денитрификации не накапливались. Как выше указывалось, при переработке нитрата сначала производится нитрит, он токсичен и накапливаться в аквариуме не должен. Опасность роста концентрации нитрита - одно из слабых мест денитрифицирующих систем. Ну и чтобы совсем сгустить краски, надо напомнить, что кроме нитратов в аквариуме еще есть фосфаты и наверное еще много разных веществ и соединений, которые нельзя проконтролировать с помощью стандартного набора аквариумных тестов, из-за чего дискусы в зацикленном с помощью денитратора аквариуме вдруг становятся вялыми и отказываются нереститься. Селективным устранением нитратов мы добиваемся только видимости создания системы замкнутого цикла.

Впрочем все это не означает, что денитрификация, в принципе, недоступна или не имеет смысла для аквариумистики. Нитратные фильтры уже много лет успешно используются в морских аквариумах и сейчас начали внедряться для обслуживания в пресноводных. Но более всего хочется надеяться, что денитрификация все еще представляет собой перспективную область для исследований, и последнее слово в этом вопросе еще не сказано.

Литература

Аникштейн С. Нитраты – такие вредные и такие полезные.
Аникштейн С. Не пренебрегайте аэрацией.
Бейли М. Бергесс П. Золотая книга аквариумиста.
Берсенев А. Загадка биофильтра.
Брокман Д. Нитраты.
Ванюшин И.И. Нужна ли в аквариуме фильтрация?
Ванюшин И.И. Покупаем аквариумы.
Горюшкин С. Обратный осмос в системе фильтрации аквариума.
Горюшкин С. Фильтрация и дискусы.
Гусев М.В., Минеева Л.А. Микробиология.
Дубиновский М. и др. Вода в аквариуме.
Дубиновский М. и др. Фильтрация в аквариуме.
Дубиновский М. Запуск аквариума.
Информационные материалы по морской аквариумистике, разные.
Кубасов А.А. Цеолиты – кипящие камни.
Ковалев В. В аквариуме что-то не так??? Попробуем разобраться!
Ковалев В. Пять очень важных параметров качества воды и как ими пользоваться не запутавшись.
Ковалев В. Состав аквариумной воды: основные проблемы.
Кусков В. Как создавать и поддерживать биологическое равновесие.
Сандер М. Техническое оснащение аквариума.
Серга Т. Nitrospira – нитрит-окисляющие бактерии в аквариумах.
Спиридонов М. Цеолит в аквариуме. Польза или вред?
Телегин А. Устройство открытых фильтров.
Успех с нитратным фильтром. Пер. А.И. Горюшкина.
Фролов Ю., Юдаков В. Основы биологической фильтрации.
Хахинов В.В. и др. Гидрохимия экстремальных водных систем с основами гидробиологии.
Хованек Т. Что такое денитрификация?
Хомченко И.Г. и др. Современный аквариум и химия.
Цигельницкий Е. Фитофильтрация.
Шереметьев И. Орошаемый фильтр для аквариума.
Элбакян В. Жуть нитратная.
Юдаков В. Краткие основы аквариумной фильтрации.
Ярцев В. Заметки по поводу биошаров (Bioballs).
Ярцев В. Фильтры с орошением (sump).
Brockmann D. Fische und Korallen im Meer und im Aquarium.
Holmes-Farley R. Chemistry and the aquarium: Nitrate in the reef aquarium.
Foster С. Exclusive: Hagen announces launch of Fluval G filter.

© Е. Грановский, 2009-2010

В пресноводном и морском аквариумах присутствуют бактерии, окисляющие и аммиак (АОБ), и нитриты (НОБ):

* Относящиеся к Нитрозомонас, среди которых N.Europea является самой распространенной (морс.вода),

* Nitrosococcus (морск.вода),

* Относящиеся к Нитроспира, среди которых N.Marina и N.Moscoviensis являются самыми распространенными АОБ и НОБ (пресн.вода),

* Nitrosococcus Mobilis (морск.вода, НОБ),

* Нитроспина (морск.вода, НОБ)

Морские нитрифицирующие бактерии отличаются от живущих в пресной воде, но при этом они имеют родство.

Гетеротрофные бактерии

Гетеротрофным бактериям необходима органическая подложка для извлечения из нее углерода и дальнейшего роста. Некоторые из этих бактерий строго аэробны, но многие и факультативно-анаэробны (могут выживать как в присутствии, так и отсутствии кислорода).

Гетеротрофные бактерии также присутствуют во многих товарах аквариумной или прудовой химии. Эти бактерии могут быть как грампозитивными (например Bacillus), так и грамотрицательными (например Псевдомонас).

Как следствие, если взять в качестве примера Псевдомонас, применение в аквариуме таких грамотрицательных средств, как Канамицин, окажет сильное негативное воздействие на Псевдомонас, но при этом не затронет аутотрофных нитрифицирующих бактерий.

Еще один фактор, заслуживающий внимания – темп роста колоний бактерий. Именно по этой причине производители так любят использовать гетеротрофные бактерии в качестве основной составляющей их товаров для быстрого запуска аквариума.

Ааутотрофные нитрифицирующие бактерии удваивают свою популяцию каждые 15-24 часа при благоприятных условиях. В свою очередь, гетеротрофные бактерии способны воспроизводиться каждые 15-60 минут.

Однако исследования выявили, что для переработки одного и того же количества аммиака потребуется в миллион раз больше гетеротрофных бактерий, чем аутотрофных нитрифицирующих. Частично это связано с тем, что гетеротрофные бактерии способны извлекать себе питание также и из других органических соединений.

Использование только гетеротрофных бактерий при запуске азотного цикла в аквариуме или пруде приведет к созданию среды, не содержащей должного количества аутотрофных нитрифицирующих бактерий и неспособной быстро адаптироваться к резко возросшей бионагрузке, будь то новая рыба или другие загрязнения, что приведет к резким скачкам содержания аммиака или нитритов.

Справиться с этим можно, лишь постоянно добавляя в воду средства для запуска с гетеротрофными бактериями, став их заложником. Еще одним недостатком такой среды является постоянное помутнение воды.

По этой причине мы считаем, что использование средств, содержащих только гетеротрофные бактерии, таких как «Hagen Cycle» или популярный грунт «Eco-complete», нежелательно в некоторых аквариумах.

При этом стоит отметить, что добавление в здоровый аквариум грунта «Eco-complete» наверняка не окажет влияния на биофильтр, но если вдруг после добавления такого грунта в аквариуме также была увеличена и бионагрузка, то это наверняка вызовет помутнение воды и скачок содержания аммиака.

Низкий рН и нитрификация (Важно!)

Также следует отметить, что рН влияет на бактерии, задействованные в процессе нитрификации. Нитрификация, протекающая с участием АОБ и НОБ, имеет различные темпы при уровнях рН ниже 6.0 и выше 7.0.

Токсичный аммиак (NH3) сам превращается в аммоний (нетоксичный NH4) при рН ниже 6.0 и также аммоний сам переходит обратно в токсичный NH3 при рН выше 7.0.

Важно: темп нитрификации быстро снижается с повышением рН от уровней ниже 6.0 до 7.0 и более, до определенного момента, после которого происходит как бы перезапуск/самовосстановление темпов нитрификации, но уже при повышенном значении рН. Механизмы взаимосвязи темпов нитрификации от рН еще до конца не изучены.

Привожу краткую цитату из статьи «Высокие темпы нитрификации при низком рН в биомасс-реакторах разного типа» (http://www.ncbi.nlm.nih.gov/pmc/articles/PMC525248/): «кормовая добавка содержала только неорганические соли без какого-либо непосредственного органического субстрата для поддержания существенного гетеротрофного роста».

Я использовал эту статью и цитату для того, чтобы подчеркнуть, что изменение состояния гетеротрофных бактерий вместе с ответным изменением редокса, либо отсутствием такового (при рН ниже 6.0 среда считается очень окисляющей, в которой практически не протекают процессы восстановления) должно означать, что среда в водоеме является неблагоприятной. И также, адаптация у аутотрофных бактерий может проходить аналогичным образом, и это объясняет прерывание нитрификации при изменении рН и при превращениях NH3 и NH4.

Так как типичная аквариумная среда всегда содержит гетеротрофные бактерии, а в наших исследованиях мы блокировали их с помощью хлорида аммония (нашатырь), то можно заключить, что гетеротрофные бактерии отчасти являются причиной взаимосвязи между темпами нитрификации и изменением рН.

В процессе нитрификации карбонаты в аквариуме или пруде противодействуют кислотам, которые образуются во время нитрификации или прочего разложения органики. Поэтому без учитывающего это обстоятельство уровня КН, даже если вы содержите таких обитателей из бассейна Амазонки, как дискусы или микрогеофагусы Рамирези, могут произойти незначительные изменения рН, которые при этом, однако, повлияют на азотный цикл.

По этой причине весьма рискованно поддерживать пониженные уровни рН/КН, так как простая подмена воды с незначительно повышенным рН может привести к моментальному переходу аммония (NH4) в смертельный аммиак (NH3) с катастрофическими последствиями.

Пониженный рН и слабая нитрифицирующая среда способствуют развитию патогенных грибов/сапролегнии и подавленному редокс-балансу.

Еще одно наблюдение: в успешно запущенных аквариумах с различными типами фильтрации (а именно с донным фильтром, канистровым внешним, подвесным, просто губковым, песочным) или с их комбинацией добавление эритромицина привело к полной остановке нитрификации в фильтрах на целую неделю.

Стоит отметить, что дольше всего лекарству «сопротивлялись» песочный, канистровый и просто губковый фильтры, и они же быстрее остальных восстановили свою работу (под губковым, или sponge filter, возможно, имеется в виду эрлифтный фильтр).

Несколько ключевых моментов по аммиаку

* Аммиак в форме токсичного NH3 присутствует в аквариумах благодаря загрязнениям (животного или растительного происхождения) и сам же превращается в менее токсичный NH4 при рН около 6.4 или ниже.

* Симптомы отравления аммиаком часто проявляются в виде болезней, так как позволяют бактериям возбудителям, таким как аэромонас, захватить организм на фоне сниженного иммунитета из-за стресса, вызванного отравлением аммиаком.

Также острым симптомом такого отравления является учащенное дыхание (часто ближе к поверхности воды), выступающие и неестественно покрасневшие жабры.

Длительное нахождение в среде даже с низким уровнем аммиака или нитритов может привести к разрушению плавников и потере цвета.

Аквариумисты, лечащие гниение плавников и другие болезни, должны в первую очередь обратить внимание на то, что причиной проблемы может быть как непосредственное отравление аммиаком, так и последствием такого отравления в прошлом.

Лечение, как и добавление лекарств, не учитывающее этого, может не принести результата или даже усугубить положение дел (применение средств, снижающих уровень аммиака оправдано как временная и срочная мера).

* Перемешивание воды может способствовать испарению ионов аммиака, но не настолько быстро, чтобы на него стоило обратить внимание для поддержания здоровой среды в аквариуме.

Аммиак, о котором мы ведем здесь речь, не должен быть перепутан с карбонатом аммония, используемым в быту, и который достаточно быстро испаряется.

Также не следует проводить аналогии с системами охлаждения, в которых безводный аммиак нагревается для испарения и конденсируется для охлаждения.

* Токсичный аммиак NH3 может быть удален из аквариума или переведен в нетоксичную форму с помощью таких средств, как Prime, Ammo lock, Amquel, но только как срочное и временное средство.

* Уровень аммиака 0.25 ррм и до 0.05 ррм НОРМАЛЕН для здорового аквариума с запущенным азотным циклом в связи с естественными колебаниями бионагрузки аквариума. Это связано с тем, что аутотрофные бактерии не мгновенно реагируют на изменения в содержании загрязнений в столбе воды.

НИТРИФИЦИРУЮЩИЕ БАКТЕРИИ

превращают аммиак и аммонийные соли в соли азотной кислоты - нитраты: нитрозобактерии, нитробактерии. Распространены в почвах и водоемах.

БСЭ. Современный толковый словарь, БСЭ. 2003

Смотрите еще толкования, синонимы, значения слова и что такое НИТРИФИЦИРУЮЩИЕ БАКТЕРИИ в русском языке в словарях, энциклопедиях и справочниках:

  • НИТРИФИЦИРУЮЩИЕ БАКТЕРИИ
    превращают аммиак и аммонийные соли в соли азотной кислоты - нитраты: нитрозобактерии, нитробактерии. Распространены в почвах и …
  • НИТРИФИЦИРУЮЩИЕ БАКТЕРИИ
    бактерии, бактерии, превращающие аммиак и аммонийные соли в нитраты; аэробны, грамотрицательны, подвижны (имеют жгутики); обитают в почве и водоёмах. …
  • БАКТЕРИИ в Энциклопедии Биология:
    , микроскопические, обычно одноклеточные организмы, для которых характерно отсутствие оформленного ядра (см. прокариоты). Распространены повсеместно: в почве, воде, воздухе, …
  • БАКТЕРИИ в Большом энциклопедическом словаре:
    (от греч. bakterion - палочка) группа микроскопических, преимущественно одноклеточных организмов. Относятся к "доядерным" формам - прокариотам. В основу современной классификации …
  • БАКТЕРИИ в Большой советской энциклопедии, БСЭ:
    (греч. bakterion - палочка), большая группа (тип) микроскопических, преимущественно одноклеточных организмов, обладающих клеточной стенкой, содержащих много дезоксирибонуклеиновой кислоты (ДНК), имеющих …
  • БАКТЕРИИ
  • БАКТЕРИИ в Современном энциклопедическом словаре:
    (от греческого bakterion - палочка), группа микроскопических преимущественно одноклеточных организмов. Обладают клеточной стенкой, но не имеют четко оформленного ядра. Размножаются …
  • БАКТЕРИИ в Энциклопедическом словарике:
    [из древнегреческого (пал (оч) ка)] низшие одноклеточные растительные организмы, видимые только под микроскопом. широко распространены в природе (вызывают гниение, брожение …
  • НИТРИФИЦИРУЮЩИЕ
    НИТРИФИЦ́ИРУЮЩИЕ БАКТЕРИИ, превращают аммиак и аммонийные соли в соли азотной к-ты - нитраты: нитрозобактерии, нитробактерии. Распространены в почвах и …
  • БАКТЕРИИ в Большом российском энциклопедическом словаре:
    БАКТ́ЕРИИ (от греч. bakt;rion - палочка), группа микроскопич., преим. одноклеточных организмов. Относятся к "доядерным" формам - прокариотам. В зависимости от …
  • БАКТЕРИИ
  • БАКТЕРИИ в Словаре Кольера:
    обширная группа одноклеточных микроорганизмов, характеризующихся отсутствием окруженного оболочкой клеточного ядра. Вместе с тем генетический материал бактерии (дезоксирибонуклеиновая кислота, или ДНК) …
  • БАКТЕРИИ в Новом словаре иностранных слов:
    ((гр. bakteria пал(оч)ка) группа (тип) микроскопических, преимущ. одноклеточных организмов, обладающих клеточной стенкой, но не имеющих оформленного ядра (роль его …
  • БАКТЕРИИ в Словаре иностранных выражений:
    [ группа (тип) микроскопических, преимущ. одноклеточных организмов, обладающих клеточной стенкой, но не имеющих оформленного ядра (роль его выполняет молекула дезоксирибонуклеи-новой …
  • БАКТЕРИИ в Новом толково-словообразовательном словаре русского языка Ефремовой:
    мн. Одноклеточные …
  • БАКТЕРИИ в Словаре русского языка Лопатина:
    бакт`ерии, -ий, ед. -`ерия, …
  • БАКТЕРИИ в Полном орфографическом словаре русского языка:
    бактерии, -ий, ед. -ерия, …
  • БАКТЕРИИ в Орфографическом словаре:
    бакт`ерии, -ий, ед. -`ерия, …
  • БАКТЕРИИ в Современном толковом словаре, БСЭ:
    (от греч. bakterion - палочка), группа микроскопических, преимущественно одноклеточных организмов. Относятся к «доядерным» формам - прокариотам. В основу современной классификации …
  • БАКТЕРИИ в Толковом словаре Ефремовой:
    бактерии мн. Одноклеточные …
  • БАКТЕРИИ в Новом словаре русского языка Ефремовой:
    мн. Одноклеточные …
  • БАКТЕРИИ в Большом современном толковом словаре русского языка:
    мн. Одноклеточные …
  • БАКТЕРИИ: БАКТЕРИИ И БОЛЕЗНИ в Словаре Кольера.
  • МИКРООРГАНИЗМ НИТРИФИЦИРУЮЩИЕ в Медицинских терминах:
    (син. бактерии нитрифицирующие) аэробные почвенные М., вызывающие окисление аммиака и аммонийных солей в нитриты, а нитритов в нитраты с выделением …
  • БАКТЕРИЯ НИТРИФИЦИРУЮЩИЕ в Медицинских терминах:
    см. Микроорганизмы …
  • ХРОМОГЕННЫЕ БАКТЕРИИ
    образующие различные красящие вещества или пигменты, вследствие чего их скопища в природе и в искусственных культурах являются окрашенными в различный …
  • СЕРНЫЕ БАКТЕРИИ в Энциклопедическом словаре Брокгауза и Евфрона.
  • СВЕТЯШИЕСЯ БАКТЕРИИ в Энциклопедическом словаре Брокгауза и Евфрона:
    (фотогенные)— одна из замечательных физиологических групп среди бактерий. Они — причина свечения, иначе фосфоресценции, мертвых обитателей морей рыб, раков, а …
  • ХРОМОГЕННЫЕ БАКТЕРИИ
    ? образующие различные красящие вещества или пигменты, вследствие чего их скопища в природе и в искусственных культурах являются окрашенными в …
  • СЕРНЫЕ БАКТЕРИИ* в Энциклопедии Брокгауза и Ефрона.
  • СВЕТЯШИЕСЯ БАКТЕРИИ в Энциклопедии Брокгауза и Ефрона:
    (фотогенные) ? одна из замечательных физиологических групп среди бактерий. Они? причина свечения, иначе фосфоресценции, мертвых обитателей морей …
  • БАКТЕРИИ: СТРОЕНИЕ И ЖИЗНЕДЕЯТЕЛЬНОСТЬ БАКТЕРИЙ в Словаре Кольера:
    К статье БАКТЕРИИ Бактерии гораздо мельче клеток многоклеточных растений и животных. Толщина их обычно составляет 0,5-2,0 мкм, а длина - …
  • ХЕМОСИНТЕЗИРУЮЩИЕ БАКТЕРИИ в Энциклопедии Биология:
    , используют энергию химических реакций (окисление неорганических веществ в процессе дыхания), как источник углерода - углекислый газ. Нитрифицирующие бактерии, встречающиеся …
  • ВИНОГРАДСКИЙ СЕРГЕЙ НИКОЛАЕВИЧ в Краткой биографической энциклопедии:
    Виноградский, Сергей Николаевич - известный ботаник, бактериолог. Родился в 1856 г. Образование получил в Киевском, С.-Петербургском, Страсбургском и Цюрихском университетах. …
  • ХЕМОСИНТЕЗ в Большой советской энциклопедии, БСЭ:
    (от хемо... и синтез), правильнее - хемолитоавтотрофия, тип питания, свойственный некоторым бактериям, способным усваивать CO2 как единственный источник углерода …
  • ОБМЕН ВЕЩЕСТВ в Большой советской энциклопедии, БСЭ:
    веществ, или метаболизм, - лежащий в основе жизни закономерный порядок превращения веществ и энергии в живых системах, направленный на …
  • МИКРООРГАНИЗМЫ в Большой советской энциклопедии, БСЭ:
    микробы, обширная группа преимущественно одноклеточных живых существ, различимых только под микроскопом и организованных проще, чем растения и животные. К М. …
  • АЭРОБЫ в Большой советской энциклопедии, БСЭ:
    аэробные организмы (от аэро... и греч. bios - жизнь), организмы, обладающие аэробным типом дыхания, т. е. способные жить и …

Все живые существа нуждаются в питании. Для одних источником энергии является солнечный свет, другие используют для этой цели химические реакции, третьи получают питание за счет двух первых групп. В первую группу входят все растения, представители второй – нитрифицирующие бактерии, в третьей группе находятся все животные, в том числе и мы с вами.

Все зеленые растения и многие бактерии могут сами вырабатывать питательные органические вещества из неорганических (вода, углекислый газ и др.). Эта группа живых организмов получила название автотрофы (от лат. «самопитающиеся»), или продуценты, и является первым звеном пищевой цепи.

Организмы, получающие энергию от солнечного света в процессе фотосинтеза, носят название фототрофы. Нитрифицирующие бактерии относят к группе микроорганизмов, которые используют в качестве источника питания энергию химических реакций окисления. Такие организмы называют хемотрофами.

Нитрифицирующие бактерии (хемотрофы) не усваивают органику, содержащуюся в почве или воде. Они, напротив, синтезируют строительный материал для создания живой клетки.


Вещества, получаемые нитрифицирующей бактерией из почвы и воды, окисляются, а образующаяся при этом энергия идет на синтез сложных органических молекул из воды и углекислого газа. Это так называемый процесс хемосинтеза.

Хемосинтезирующие организмы, как и все автотрофы, обходятся без поступления извне необходимых питательных веществ, они вырабатывают их самостоятельно. Однако в отличие от зеленых растений нитрифицирующие бактерии не нуждаются даже в солнечном свете для процесса питания.

Есть организмы, использующие для получения энергии электричество. Недавно группа японских ученых опубликовала результаты исследования бактерий, живущих около глубоководных горячих источников. При трении водного потока о каменные выступы на дне образуется слабый заряд электричества, который и использовали изучаемые бактерии для получения пищи.

Что нужно для питания растений?

Обитающие в почве нитрифицирующие бактерии способом окисления разлагают аммиак, который образуется от гниения органики, до азотистой кислоты. Другие бактерии окисляют (добавляют кислород с выделением энергии) азотистую кислоту до азотной. В свою очередь обе эти кислоты с помощью минеральных веществ из почвы создают соли и фосфаты для питания растений.

Кроме этого, для питания необходим азот, содержащийся в окружающей среде. Однако самостоятельно добывать его растения не способны. На помощь приходят азотфиксирующие бактерии. Они усваивают азот, находящийся в воздухе, и переводят его в доступную для растительности форму – соединения аммония. Азотфиксирующие нитрифицирующие бактерии могут свободно жить в почве (азотобактер, клостридиум) или находиться в симбиозе с высшими растениями (клубеньковые).

Следующее звено в пищевой цепочке

Например, употребляя пищу растительного происхождения, мы напрямую используем продукт, синтезированный за счет энергии солнечного света. С животной пищей мы получаем готовые органические вещества, которые были получены животными из растений.

Однако полностью разложить получаемую органическую пищу гетеротрофы не могут. Всегда остаются отходы жизнедеятельности, которыми, в свою очередь, занимается отдельная группа микроорганизмов.

Кто занимается утилизацией отходов в природе

Бактерии и грибы, использующие отмершие остатки живых организмов, называют редуцентами (от лат. «восстановление»). Они разлагают органические остатки способом окисления до неорганики и простейших органических соединений. От прочих живых существ редуценты отличаются тем, что не имеют твердых непереваренных остатков.

В процессе биологической очистки принимают активное участие гетеротрофные и автотрофные нитрифицирующие бактерии, обитающие в почве, иле, гниющих остатках, водоемах. Они превращают аммиак, выделяемый другими живыми организмами вместе с отходами жизнедеятельности, в соли азотной кислоты (нитраты). Процесс нитрификации происходит в два этапа. Сначала аммиак окисляется до нитрита, затем следующая группа бактерий окисляет нитрит до нитрата.

Эта группа бактерий возвращает в почву и воду минеральные соли, которые вновь используются продуцентами-автотрофами. Таким способом замыкается оборот минеральных составляющих в природе.

Живые биологические фильтры

На практике свойства нитрифицирующих бактерий широко используют в создании биологических фильтров для аквариумов.

Аквариум с чистыми стенками и прозрачной водой, в которой плавают разноцветные рыбки, – украшение для любого помещения и предмет законной гордости владельца. Добиться чистоты в аквариуме не так-то просто. Остатки корма, экскременты рыб, частички отмерших водорослей не делают воду чище.

Довольно долгое время любители аквариумов использовали только способы механической очистки. В отличие от механики биологический фильтр - это не прибор, а некая совокупность процессов, в результате которых из воды удаляются токсичные соединения:

  1. Содержащийся в мочевине аммоний, который при повышении рН воды превращается в более опасный аммиак. Соотношение температуры и рН воды в аквариуме напрямую связано с количеством токсичного аммиака. При 20⁰С и рН 7 содержание аммиака 0,5%, а при 25⁰С и рН 8,4 – уже 10%.
  2. Следующая опасность – нитрит, получаемый при окислении аммиака.
  3. Окисление нитрита дает нитрат, который тоже токсичен.

Первый способ трудозатратен (кому захочется бегать с ведрами?), а второй требует определенных условий – бактериям нужна пища, комфортная температура и место для жизни.

В биологическом фильтре для аквариумов участвуют две группы бактерий – нитрифицирующие (Nitrosomonas) и нитробактерии (Nitrobacter). Нитрифицирующие бактерии делают из аммиака нитриты, а нитробактерии – из нитрита нитрат. Результат последней реакции частично используется водорослями, но основное количество нитрата можно удалить, только сменив воду в аквариуме. От необходимости бегать с ведрами не смогут освободить никакие бактерии.

Для комфортного проживания бактерий в аквариуме нужна температура 26 -27⁰С, наличие кислорода (аэрация) и фотосинтез (водные растения). Пищей их обеспечат обитатели аквариума, а домом послужит аквариумная почва.

Итак, микроорганизмы обрабатывают неорганические вещества, находящиеся в окружающей среде, и создают в почве условия для питания растений. Источником энергии для животных служат, в свою очередь, растения. На следующем этапе животные-хищники забирают энергию у своих травоядных собратьев. Человек, как все высшие хищники, может получать питание и от растений, и от животных. Остатки жизнедеятельности животных и растений служат пищей для микроорганизмов, поставляющих неорганические вещества. Круг замкнулся.

Поддержание жизни и получение энергии возможно в совершенно разных природных условиях. Возможность зарождения новой жизни в непредставимых, на первый взгляд, условиях доказывает, насколько многогранна и пока мало изучена наша среда обитания.