Расширенное множество натуральных чисел. Тема: «О расширении множества натуральных чисел

Положительные рациональные числа.

Наименьшее общее кратное и наибольший общий делитель.

Признаки делимости.

Теоретико-множественный смысл разности.

Теоретико-множественный смысл суммы.

ВОПРОСЫ К КОЛЛОКВИУМУ

1. Из истории возникновения понятия натурального числа.

2. Порядковые и количественные натуральные числа. Счет.

3. Теоретико-множественный смысл количественного натурального числа и нуля.

4. Теоретико-множественный смысл отношения «меньше», «равно»

6. Законы сложения.

8. Отношения «больше на» и «меньше на».

9. Правила вычитания числа из суммы и суммы из числа.

10. Из истории возникновения и развития способов записи натуральных чисел и нуля.

11. Понятие системы счисления.

12. Позиционные и непозиционные системы счисления.

13. Запись и названия чисел в десятичной системе счисления.

14. Сложение в десятичной системе счисления.

15. Умножение в десятичной системе счисления

16. Упорядоченность множества натуральных чисел.

17. Вычитание в десятичной системе счисления.

18. Деление в десятичной системе счисления.

19. Множество целых неотрицательных чисел.

20. Отношение делимости и его свойства.

23. Простые числа. Способы нахождения наибольшего общего делителя и наименьшего общего кратного чисел.

24. Понятие дроби.

27. Запись положительных рациональных чисел в виде десятичных дробей.

28. Действительные числа.


МОДУЛЬ 4. ГЕОМЕТРИЧЕСКИЕ ФИГУРЫ И ВЕЛИЧИНЫ

Известно, что числа возникли из потребности счета и измерения, но если для счета достаточно натуральных чисел, то для измерения величин нужны и другие числа. Однако в качестве результата измерения величин будем рассматривать только натуральные числа. Определив смысл натурального числа как меры величины, мы выясним, какой смысл имеют арифметические действия над такими числами. Эти знания нужны учителю начальных классов не только для обоснования выбора действий при решении задач с величинами, но и для понимания еще одного подхода к трактовке натурального числа, существующего в начальном обучении математике.

Натуральное число мы будем рассматривать в связи с измерений положительных скалярных величин - длин, площадей, масс, времени др., поэтому прежде, чем говорить о взаимосвязи величин и натуральных чисел, напомним некоторые факты, связанные с величиной и измерением, тем более что понятие величины, наряду с числом, является основным в начальном курсе математики.

В последние годы наметилась тенденция к включению значительного по объему геометрического материала в начальный курс математики. Но для того, чтобы учитель мог познакомить учащихся с различными геометрическими фигурами (как плоскости, так и пространства), мог научить их правильно изображать геометрические фигуры, ему нужна соответствующая математическая подготовка. Безусловно, нужны знания об истории возникновения и развития геометрии, так как ученик в процессе развития геометрических представлений проходит, в свернутом виде, основные этапы создания геометрической науки. Учитель должен быть знаком с ведущими идеями курса геометрии, знать основные свойства геометрических фигур, уметь их построить.



В освоении этого материала учителю поможет материал данного модуля. В нем с учетом подготовки, полученной студентами в школьном курсе математики, представлен геометрический материал, необходимый для обучения младших школьников элементам геометрии.

Студент должен уметь:

Иллюстрировать примерами из учебников математики для начальной школы к определению натурального числа и действий над числами, как результата измерения величин;

Решать элементарные задачи на построение с помощью циркуля и линейки в объеме, определенном содержанием обучения;

Решать несложные задачи на доказательство и вычисление числовых значений геометрических фигур;

Изображать на плоскости призму, прямоугольный параллелепипед, пирамиду, цилиндр, конус, шар, используя правила проектирования.

С дошкольного возраста ребенок оперирует натуральными числами, то производя счет предметов, то пересчитывая множество пальцев на руках. Основным понятием при введении понятия множества натуральных чисел N является отношение , которое определяется следующими аксиомами Пеано.

Аксиома 1 . В множестве N существует элемент, непосредственно не следующий ни за каким элементом этого множества, который называется единицей и обозначается символом 1.

Аксиома 2. Для каждого элемента п множества N, существует единственный элемент (п+1) , непосредственно следующий за п .

Аксиома 3. Для каждого элемента п из N существует не более одного элемента (п-1) , за которым непосредственно следует п.

Аксиома 4. Любое подмножество Р множества N совпадает с N , если для него выполняются свойства: 1) 1 содержится в Р ; 2) из того, что п содержится в Р , следует, что и (п+1) содержится в Р .

На основании аксиом Пеано сформулируем определение множества натуральных чисел.

Определение. Множество N, элементы которого удовлетворяют аксиомам 1-4, т.е. находятся в отношении «непосредственно следовать за» , называется множеством натуральных чисел, а его элементы – натуральными числами.

Расширением множества натуральных чисел N является множество целых чисел Z, которое является объединением натуральных чисел, числа нуль и чисел противоположных натуральным числам.

Расширением множества целых чисел является множество рациональных чисел Q, представляющее собой объединение целых и дробных чисел. Множество всех чисел представимых в виде несократимой дроби m/n , где m может быть любым целым числом, (не исключая нуля), т.е. m Î Z, а n – натуральное число, т.е. n Î N, составляют множество рациональных чисел. Любое рациональное число можно записать в виде бесконечной десятичной периодической дроби, и наоборот, любая бесконечная десятичная периодическая дробь представляет собой рациональное число.

Существуют числа, которые нельзя представить в виде несократимой дроби, т.е. не принадлежат множеству рациональных чисел. Такие числа составляют множество иррациональных чисел I , их можно представить в виде бесконечной десятичной непериодической дроби. Например, длина диагонали квадрата со стороной 1 должна выражаться некоторым положительным числом r 2 =1 2 +1 2 (по теореме Пифагора), т.е. таким, что r 2 =2. Число r не может быть целым, 1 2 = 1, 2 2 = 4 и т.д. Число r не может быть и дробным: если r = m/n - несократимая дробь, где n¹1, то r 2 =m 2 /n 2 тоже будет несократимой дробью, где n 2 ¹ 1; значит, m 2 /n 2 не является целым числом, а потому не может равняться 2. Поэтому длина диагонали квадрата выражается иррациональным числом, оно обозначается . Аналогично, не существует рационального числа, квадрат которого равен 5, 7, 10. Соответствующие иррациональные числа обозначаются , , . Противоположные им числа также иррациональны, они обозначаются - ,- ,- .



Множество иррациональных чисел бесконечно. Например, число p, выражающее отношение длины окружности к диаметру, нельзя представить в виде обыкновенной дроби – это иррациональное число.

Множество, элементами которого являются рациональные и иррациональные числа называется множеством действительных чисел и обозначается буквой R. Каждому действительному числу соответствует единственная точка координатной прямой. Каждая точка координатной прямой соответствует единственному действительному числу. Множество действительных чисел называют также числовой прямой.

Нами рассмотрен процесс расширения понятия числа от натуральных к действительным, который был связан с потребностями практики и с нуждами самой математики. Необходимость выполнения деления привела от натуральных чисел к понятию дробных положительных чисел; затем операция вычитания привела к понятиям отрицательных чисел и нуля; далее, необходимость извлечения корней из положительных чисел – к понятию иррационального числа. Множество, на котором выполнимы все эти операции, есть множество действительных чисел, однако не все операции выполнимы на данном множестве. Например, нет возможности извлечь корень квадратный из отрицательного числа или решить квадратное уравнение х 2 + х + 1 = 0. Значит, есть потребность в расширении множества действительных чисел.



Введем число i , такое, что i 2 = - 1. Это число позволит извлекать корни из отрицательных чисел. Итак, расширением множества действительных чисел есть множество комплексных чисел , которое обозначается буквой С . Подробно, с множеством комплексных чисел, мы познакомимся позже.

Будем пользоваться обозначениями:

N - множество натуральных чисел;

Z - множество целых чисел;

Q - множество рациональных чисел,

R - множество действительных чисел

С - множество комплексных чисел.

Лекция 49. Положительные рациональные числа

1. Рациональные числа. Понятие дроби.

2. Рациональное число как класс эквивалентных дробей.

3. Арифметические действия над рациональными числами. Сумма, произведение, разность, частное рациональных чисел. Законы сложения и умножения.

4. Свойства отношения «меньше» на множестве рациональных чисел.

Действительные числа - не последние в ряду различных чисел. Процесс, начавшийся с расширения множества натуральных чисел, про­должается и сегодня - этого требует развитие различных наук и самой математики.

Знакомство учащихся с дробными числами происходит, как пра­вило, в начальных классах. Затем понятие дроби уточняется и расши­ряется в средней школе. В связи с этим учителю необходимо владеть понятием дроби и рационального числа, знать правила выполнения действий над рациональными числами, свойства этих действий. Все это нужно не только для того, чтобы математически грамотно ввести понятие дроби и обучать младших школьников выполнять с ними действия, но и, что не менее важно, видеть взаимосвязи множеств ра­циональных и действительных чисел с множеством натуральных чи­сел. Без их понимания нельзя решить проблему преемственности в обучении математике в начальных и последующих классах школы.

Отметим особенность изложения материала данного параграфа, которая обусловлена как небольшим объемом курса математики для учителей начальных классов, так и его назначением: материал будет представлен во многом конспективно, часто без строгих доказа­тельств; более подробно будет изложен материал, связанный с рацио­нальными числами.

Расширение множества N натуральных чисел будет происходить в такой последовательности: сначала строится множество Q+ положи­тельных рациональных чисел, затем показывается, как его можно расширить до множества R+ положительных действительных чисел, и, наконец, очень кратко описывается расширение множества R+ до множества R всех действительных чисел.



Понятие дроби

Пусть требуется измерить длину отрезка х с помощью единичного отрезка е (рис. 128). При измерении оказалось, что отрезок х состоит из трех отрезков, равных е , и отрезка, который короче отрезка е. В этом случае длина отрезка х не может быть выражена натуральным числом.

I-I-I-I-I-I-I-I-I-I-I-I-I-I-I

Однако если отрезок е разбить на 4 равные части, то отрезок х окажется состоящим из 14 отрезков, равных четвертой части отрезка е . И тогда, говоря о длине отрезка х, мы должны указать два числа 4 и 14: четвертая часть отрезка е укладывается в отрезке точно 14 раз. Поэтому условились длину отрезка х записывать в виде ∙Е , где Е - длина единичного отрезка е , а символ называть дробью.

В общем виде понятие дроби определяют так.

Пусть даны отрезок х и единичный отрезок е, длина которого Е. Если отрезок х состоит из т отрезков, равных п-ой части отрезка е, то длина отрезка х может быть представлена в виде ∙ Е, где символ называют дробью (и читают «эм энных»).

В записи дроби числа m и n - натуральные, m называется числителем, n - знаменателем дроби.

Дробь называется правильной, если ее числитель меньше знаменателя, и неправильной, если ее числитель больше знаменателя или равен ему.

Вернемся к рисунку 128, где показано, что четвертая часть отрезка уложилась в отрезке х точно 14 раз. Очевидно, это не единственный вариант выбора такой части отрезка е , которая укладывается в отрезке х целое число раз. Можно взять восьмую часть отрезка е , тогда отрезок х будет состоять из 28 таких частей и его длина будет выражаться дробью 28/8. Можно взять шестнадцатую часть отрезка е , тогда отрезок х будет состоять из 56 таких частей и его длина будет выражаться дробью 56/16.

Вообще длина одного и того же отрезка х при заданном единич­ном отрезке е может выражаться различными дробями, причем, если длина выражена дробью , то она может быть выражена и любой дробью вида , где к - натуральное число.

Теорема. Для того чтобы дроби и выражали длину одного и того же отрезка, необходимо и достаточно, чтобы выполнялось равенство mq = пр .

Доказательство этой теоремы мы опускаем.

Определение . Две дроби m/n и p/q называются равными, если mq= n p.

Если дроби равны, то пишут m/n = p/q .

Например, 17/3 = 119/21, так как 17∙21 = 119∙3 = 357, а 17/19 23/27, потому что 17∙27 = 459, 19∙23 = 437 и 459 ¹ 437.

Из сформулированных выше теоремы и определения следует, что две дроби равны тогда и только тогда, когда они выражают длину одного и того же отрезка.

Нам известно, что отношение равенства дробей рефлексивно, сим­метрично и транзитивно, т.е. является отношением эквивалентности. Теперь, используя определение равных дробей, это можно доказать.

Теорема. Равенство дробей является отношением эквивалентности.

Доказательство. Действительно, равенство дробей рефлексивно: = , так как равенство

m/n = m/n справедливо для любых натуральных чисел т и п. Равенство дробей симметрично: если = , то = , так как из тq= пр следует, что рп = qт (т, п, р, qÎN ).основное свойство дроби. Напомним его.

Первое расширение понятия о числе, которое учащиеся усваивают после ознакомления с натуральными числами, - добавление нуля. Происходит это еще в начальной школе.

Сначала «О» - знак для обозначения отсутствия числа. Почему же нельзя делить на нуль?

Разделить - значит найти такой х , что: х-0 = а. Возможны два случая:

1) а * х: дг-0 * 0. Это невозможно;

2) а = 0, следовательно, надо найти хг. х-0 = 0. Таких х сколько угодно, что противоречит требованию однозначности каждой арифметической операции:

Есть учебники, где основные законы действий считаются справедливыми без необходимых обоснований.

В курсе математики 5-6-х классов имеет место построение множества рациональных чисел. Следует отметить, что последовательность расширений множеств не однозначна. Возможные варианты:


Элементарное понятие о дробном числе дается уже в начальной школе как о нескольких долях единицы.

В основной школе дроби и действия над ними обычно вводятся методом целесообразных задач, придуманным еще С. И. Шохор- Троцким, например, при рассмотрении следующей задачи.

  • 1 кг сахарного песка стоит 15 руб. Сколько стоят 4 кг песка? 5 кг?
  • - кг?

Ученики могут умножить 15 на 4, на 5, теперь им требуется найти

От 15. Ученики могут разделить на 3, найдя, сколько стоит одна доля 3

килограмма, и умножить на 2, чтобы определить, сколько стоят две таких доли. Поскольку одну и ту же задачу разумно решать одинаковым арифметическим действием, то они приходят к выводу, что эти два последовательных действия равнозначны умножению 15 на -.

При введении дробных чисел желательно учитывать опыт учащихся, опираться на него. С дробями ученики встречаются в музыке. Самые распространенные дроби в ней: две четверти, три четверти, переводя на математический язык: две четвертых, три четвертых. Верхняя цифра обозначает количество долей в такте: две или три. Нижняя цифра обозначает длительность этой доли. В пашем случае - это четверть. В размере две четверти звучат марш, польки. В размере три четверти - вальс. Эти воспоминания помогут ученикам связать новые знания с их опытом, что является необходимым условием достижения понимания.

При изучении действий второй ступени рекомендуется располагать различные случаи умножения на правильную дробь в порядке возрастания трудности: 1) умножение на целое число; 2) умножение целого числа на смешанное число; 3) умножение дроби на смешанное число; 4) умножение на правильную дробь; 5) умножение на дробь, в которой числитель равен знаменателю.

Чтобы показать, что число при делении на правильную дробь увс-

личивается, можно рассмотреть следующую ситуацию: 6: -.

Шесть кружков разрезали на четыре части, частей, конечно, стало больше, чем кружков.

Для введения сложных случаев предлагается задача на вычисление площади прямоугольника.

При любой последовательности изучения дробей есть свои плюсы и минусы.

Если десятичные дроби вводятся раньше обыкновенных, то положительным является то, что:

  • десятичные дроби могут быть введены при рассмотрении десятичной системы нумерации целых положительных чисел (первая разрядная единица после запятой - десятые доли единицы, а следующая - сотые...);
  • все арифметические действия проще выполняются для десятичных дробей;
  • имеют большее практическое применение, чем обыкновенные.

Отрицательным является то, что для обыкновенных дробей всю

теорию дробей надо строить заново, так как нельзя из частного случая делать общие выводы.

Если же обыкновенные дроби вводятся до десятичных, то следует учитывать, что:

  • десятичные - частный случай обыкновенных, следовательно, все правила действий - как следствия;
  • действия второй ступени для десятичных дробей как совокупности новых разрядных единиц (для действий первой ступени) невозможны;
  • действия над некоторыми обыкновенными проще (второй ступени);
  • основное свойство дроби только на основе общего понятия о дроби.

Для введения отрицательных чисел используются разные приемы.

Так, для обеспечения мотивации может быть использована проблемная ситуация, близкая опыту ребенка.

Робин Гуд, спасаясь от преследователей, проплыл вверх по реке а км, но, оказавшись перед бродом, вынужден был плыть вниз по реке и проплыл b км. Где он оказался от начала своего пути (на каком расстоянии от входа в реку)? Выписав выражение для нахождения неизвестного: х = а - Ь у необходимо рассмотреть все возможные соотношения между аик

1) а > к, 2) а = Ь; 3) а невыполнимо.

Также отрицательные числа могут быть введены:

  • через рассмотрение величин, которые имеют противоположный смысл (А. П. Киселев);
  • при рассмотрении характеристик изменений (увеличений и уменьшений) величин;
  • па основе графических представлений, отрицательные числа как отметки точек на оси (В. Л. Гончаров);
  • через задачу об изменении уровня воды в реке в течение двух суток (Д. К. Фаддеев и И. С. Соминский): во время сильных дождей уровень воды в реке поднялся на а см в течение суток. В течение следующих суток уровень воды понизился на b см. Какой будет уровень воды по истечении двух суток? (а - Ь);
  • при изображений расстояний на температурной шкале (А. Н. Барсуков).

Эти приемы могут использоваться и как один из аспектов мотивации. Еще одним аспектом является невозможность выполнения какого-либо действия, как в задаче выше.

Введя сравнение и действия над рациональными числами и свойства действий, мы получили числовое поле. Его дальнейшее расширение уже не может быть продиктовано невыполнением действий. Расширение понятия числа было вызвано геометрическими соображениями, а именно: отсутствием взаимно однозначного соответствия между множеством рациональных чисел и множеством точек числовой прямой. Для геометрии необходимо, чтобы каждая точка числовой прямой имела абсциссу, т.е. чтобы каждому отрезку при данной единице измерения соответствовало число, которое можно было бы принять за его длину.

К необходимости этого расширения приводит и невозможность извлечения корня из положительного числа, нахождение логарифма любого положительного числа при любом положительном основании. Эта цель достигается после того, как поле рациональных чисел (с помощью присоединения к нему системы иррациональных чисел) подвергается расширению до множества действительных чисел.