Орбиты искусственных спутников земли. На какой высоте летают спутники и космические корабли Параметры орбит искусственных спутников земли

Искусственные спутники Земли (ИСЗ) представляют собой вы­веденные на орбиты Земли КА. Орбиты ИСЗ различаются:

- формой : круговая и эллиптическая;

- наклоном по отношению к плоскости экватора (рис. 2.38): 1 - экваториальные (угол наклона к плоскости экватора равен нулю), 2 - полярные (угол наклона равен 90"), 3, 4 - наклонные;

- направлением вращения : 3 - прямые (направление совпадает с вращением Земли), 4 - обратные (противоположны вращению Земли);

- высотой над поверхностью Земли : низкоорбитальные (с высотой перигея 200 - 400 км), высокоорбитальные (с высотой перигея более 1000 км), геостационарные (с радиусом круговой орбиты около 42160 км и расстоянием от поверхности Земли 35880 км).

Рис. 1.1. Орбиты искусственных спутников Земли:

1 - экваториальная; 2 - полярная; 3 - наклонная (прямая); 4 - наклонная (обратная)

Геостационарные ИСЗ имеют экваториальную прямую орбиту, что позволяет им постоянно находиться над определенной точкой экватора Земли.

Движение ИСЗ рассматривается в гравитационном поле Земли. На движение спутников и их орбиту оказывают влияние ряд возмущающих факторов:

Нецентральность (несферичность) гравитационного поля Земли;

Гравитационные поля Луны, Солнца и других небесных тел;

Аэродинамические силы, создаваемые атмосферой Земли (особенно для низкоорбитальных спутников).

Орбиты лунных и межпланетных КА

Полет КА к Луне и другим планетам солнечной системы требует рассмотрения движения КА в пространстве двух или более притягивающих центров. Для такого полета КА должна быть сообщена скорость, превышающая вторую космическую. Поэтому траектория на определенном участке становится близкой к гиперболической с фокусом в центре Земли (либо соответствующей пролетной планеты).

Траектория движения КА к Луне или планете обычно состоит из нескольких участков (в зависимости от поставленной задачи: посадки, облета или пролета):

Выведение КА и разгонной ступени на промежуточную орбиту спутника Земли;

Разгон КА с помощью разгонной ступени до скорости, достаточной для перелета к Луне или соответствующей планете;

Движение КА в окрестности Луны или планеты назначения с совершением посадки либо переходом на орбиту искусственного спутника, либо пролетом «а определенном расстоянии от поверхности. В последнем случае формируется новая траектория для полета к следующей планете либо для возвращения КА на Землю.

Первый искусственный спутник Земли был запущен в 1957 году. С тех пор человечество сделало огромный технологический прорыв. На данный момент на околоземной орбите находится несколько десятков тысяч спутников. Они обеспечивают жителей планеты сотовой связью, интернетом, GPS-данными, телевидением, принимают активное участие в научно-исследовательской работе. Также они используются для военных целей. В зависимости от целевого назначения выбирается, на какой высоте летают спутники. Все это значительно облегчило жизнь, позволило поднять уровень связи. Наибольший вклад они внесли в науку – изучение строение атмосферы Земли, погодных изменений, космоса, небесных тел.

Какие виды спутников встречаются на орбите?

К искусственным спутникам Земли относятся все тела, которые были выведены на орбиту при помощи ракеты носителя. Сюда можно отнести шаттлы, космические станции, исследовательские лаборатории, автономные аппараты. Именно непилотируемые спутники являются главными поставщиками связи и научных данных. Такие аппараты не требуют наличия экипажа, обслуживания, специальных отсеков для обеспечения жизнедеятельности. Классифицируются искусственные спутники Земли по своему прямому назначению:
  • Научно-исследовательские. Применяются в целях изучения строения атмосферы, космоса. Могут нести на своем борту телескоп для изучения удаленных планет;
  • Прикладные. Предназначены для удовлетворения нужд населения, испытания оборудования, систем связи.

Спутники выполняют свои функции автономно, не используют топливо. Мониторинг состояния и необходимое маневрирование выполняется из командных центров на Земле. В зависимости от своего назначения, спутники снабжаются необходимым оборудованием и системой связи.

Объем аппарата напрямую зависит от его функциональности и назначения. Встречаются спутники с массой от 20 кг до нескольких сотен тонн. Первый аппарат, запущенный СССР весил всего 28 килограмм и нес на борту только систему радиопередачи.

На какой высоте летают спутники?

Выведение на орбиту спутника осуществляется при помощи многоступенчатой ракеты. Принцип действия прост – аппарат выталкивается из атмосферы с такой силой, которой хватит для задания траектории полета. Движется вокруг планеты он за счет силы притяжения. Комплектацией предусмотрена установка маневровых двигателей для корректировки траектории. Они позволяют избегать столкновения с космическим мусором, другими спутниками.

Движение осуществляется на заданной орбите. Удаленность от планеты зависит от назначения аппарата, заданной траектории. Используется несколько видов орбит:

  • Околоземная или низкая. Обеспечивает наиболее приближенное расположение. Высота составляет 300-500 км над уровнем моря. Использовалась для работы первых космических аппаратов, сейчас там находятся аппараты для дистанционного зондирования земной поверхности и атмосферы;
  • Полярная. Расположена в плоскости полярных полюсов Земли. Угол наклона близок к 90 градусам. Из-за сплюснутости планеты, можно добиться различной скорости вращения, которая позволит проходить спутнику одну и ту же широту в одинаковое время;
  • Геостационарная. Высота на ней составляет от 35 000 км, расположена в плоскости экватора. Устойчивых точек всего две, на остальном пути необходимо поддерживать траекторию искусственно;
  • Сильноэллиптическая. Контур орбиты представляет собой эллипс. Высота меняется в зависимости от точки траектории. Благодаря большому размеру, позволяет поддерживать необходимое количество спутников одновременно над одной страной. Используется преимущественно в телекоммуникационных целях. Также здесь работают аппараты с телескопами для изучения отдаленных объектов;
  • Круглая. Сечение орбиты представляет собой круг. Показатель высоты близок к постоянному в любой момент времени.

Высота полета спутников над Землей задается на основании их целевого назначения и выбранной орбиты. Геостационарная орбита является наиболее важной и дорогой. Поэтому аппараты, выработавшие свой ресурс, удаляются с нее. Используется в основном в научных целях.

Для систем глобального позиционирования используются круглые орбиты с постоянной высотой. Такая траектория является оптимальной для передачи сигнала. Высота орбиты спутников GPS составляет 20 тысяч километров. Один аппарат за сутки совершает два витка вокруг планеты. Скорость позволяет использовать 4 спутника в одной плоскости для обеспечения постоянной передачи данных.

На какой высоте летают космические корабли?

Главное отличие пилотируемых аппаратов – необходимость поддержание жизнедеятельности и возвращения экипажа. Поэтому высота полета кораблей значительно ниже. Пилотируемые станции используются для проведения научных исследований, изучения влияния невесомости, открытого космоса, наблюдения за космическими телами.

Первый пилотируемый космический корабль был запущен в 1961 году. Движение осуществлялось по эллиптической орбите. Перигей составлял 175 км, а апогей – 320 км над уровнем моря. За прошедшие полвека исследований высота значительно увеличилась из-за присутствия большого количества космического мусора на околоземной орбите. На данный момент используется орбита с перигеем в 400 км. Обусловлено это также и отсутствием влияния атмосферы на траекторию движения.

Запуск первого в мире советского искусственного спутника Земли 4 октября 1957 г. положил начало эры создания искусственных небесных тел. При запуске первых искусственных спутников Земли (ИСЗ) ставилась задача получить сведения, касающиеся плотности и температуры верхних слоев атмосферы и распределения массы в пределах Земли. Запуски ИСЗ позволили установить, что на больших высотах плотность воздуха во много раз больше, чем предполагалось до запуска спутников, что она сильно меняется в течение суток. По данным наблюдения за движением ИСЗ, ученые более точно определили форму и размеры Земли, а также расстояния между материками. Диапазон задач, которые ставятся и решаются с помощью ИСЗ, непрерывно расширяется. К настоящему времени число запущенных ИСЗ достигает нескольких тысяч. Спутники запускаются теперь не только для научных целей, но и для решения многих практических задач.

Например, в ряде стран запускаются метеорологические спутники и спутники связи. В течение нескольких лет военно-морские силы США используют в опытном порядке спутниковую систему навигации «Транзит», состоящую из пяти ИСЗ.

В связи с бурным ростом воздушного движения начали проводиться разработки по применению ИСЗ для предотвращения столкновения самолетов в воздухе, управления воздушным движением и обеспечения самолетовождения.

Внедрение спутниковых систем самолетовождения и связи должно разрешить проблему надежного УВД и навигационного обеспечения полетов в условиях ожидаемого роста движения самолетов к концу нынешнего столетия. Применение спутниковых систем самолетовождения и связи позволит обеспечивать полеты самолетов в любых погодных условиях. Учитывая исключительную надежность этих систем, можно будет уменьшить нормативы бокового и вертикального эшелонирования и тем самым улучшить использование воздушного пространства. Авиадиспетчеры и пилоты получат возможность связываться с любой точкой Земли и воздушного пространства.

В настоящее время можно создать единую мировую навигационную систему. Но для этого необходимо международное сотрудничество. Использование ИСЗ для самолетовождения является дальнейшим развитием методов авиационной астрономии. Рассмотрим некоторые понятия, связанные с навигационным использованием ИСЗ.

Элементы орбиты ИСЗ.

Искусственным спутником Земли принято считать космический аппарат, выведенный в космическое пространство, движение которого по своей орбите подчиняется естественным силам. Путь ИСЗ в пространстве называется орбитой. В соответствии с законами небесной механики плоскость орбиты спутника Земли всегда проходит через центр масс Земли и спутника. Поэтому все возможные орбиты спутника располагаются в плоскостях сечения Земли по большому кругу. Вследствие этого ИСЗ может двигаться, например, в плоскости экватора, но не может перемещаться в плоскостях параллелей Земли.

Чтобы тело стало ИСЗ, необходимо придать ему скорость относительно Земли не меньше круговой, которую называют первой космической скоростью. Для спутника, движущегося по окружности у поверхности Земли, она равна 7,912 км/с. Круговая скорость с увеличением высоты уменьшается. Например, на высоте 1000 км круговая скорость спутника равна 7,356 км/с. Если искусственный спутник получит скорость больше круговой, соответствующей его высоте над земной поверхностью, то он будет двигаться по эллиптической орбите. При орбитальной скорости 11,19 км/с искусственный спутник выходит на эллиптическую орбиту относительно Солнца, т. е. перестает быть спутником Земли.

Для навигационных целей используют стационарные, синхронные и несинхронные ИСЗ.

Спутник, имеющий экваториальную круговую орбиту с периодом обращения, равным периоду вращения Земли, называется стационарным. Он расположен в пространстве всегда над одной и той же точкой экватора. Чтобы добиться указанного условия, спутник должен двигаться с запада на восток на высоте 35 800 км со скоростью 3,076 км/с. В этом случае угловая скорость спутника будет равна угловой скорости вращения Земли.

Спутник, имеющий период обращения в целое число раз меньший или больший, чем период вращения Земли, называется синхронным. Такой спутник характерен тем, что при первом условии он ежесуточно проходит над одной и той же точкой Земли в одно и то же время.

Спутник, у которого период обращения не кратнен периоду вращения Земли, называется несинхронным.

Зная элементы орбиты ИСЗ, можно определить его положение в пространстве для любого момента времени. Эллиптическая орбита ИСЗ показана на рис. 7.20. На этом рисунке Я - перигей орбиты (ближайшая к Земле точка орбиты спутника); А - апогей орбиты (наиболее удаленная от Земли точка орбиты спутника); i - угол наклона плоскости орбиты спутника к плоскости небесного экватора; - восходящий узел орбиты (точка на орбите, в которой ИСЗ пересекает плоскость небесного экватора, переходя из Южного полушария в Северное); 15 - нисходящий узел орбиты; Т - точка весеннего равноденствия; Q - прямое восхождение восходящего узла орбиты; со - угловое расстояние перигея по орбите от восходящего узла; а - прямое восхождение спутника; - склонение спутника. Чтобы полностью определить орбиту спутника, необходимо знать шесть элементов. Элементы Q, i, со называют угловыми элементами. К пространственным элементам орбиты относятся: большая полуось эллипса а и эксцентриситет орбиты , т.е. отношение фокусного расстояния К большой полуоси эллипса. Большая полуось и эксцентриситет характеризуют размеры и форму эллиптической орбиты. Шестым элементом является время прохождения перигея.

Положение спутника на небесной сфере определяется склонением и прямым восхождением. Но эти элементы очень быстро изменяются, так как ИСЗ имеет малый период обращения. Если бы на движение ИСЗ не оказывали действия возмущающие силы, то положение его орбиты в пространстве, а также размеры и форма орбиты оставались бы неизменными.

Рис. 7.20. Элементы орбиты ИСЗ

В действительности движение спутника испытывает сложные и разнообразные возмущения. Влияние сил притяжения Солнца, Луны и планет, неоднородность поля тяготения Земли, влияние сил сопротивления атмосферы и электромагнитных сил изменяют параметры орбиты ИСЗ.

Без знания элементов траектории и координат ИСЗ нельзя использовать его для самолетовождения. Поэтому в состав спутниковых навигационных систем входит ЭВМ, которая вычисляет эфемериды (координаты) ИСЗ. Вычисленные координаты передаются на спутник, а оттуда на самолет, где они используются при обработке результатов измерений.

Спутниковые навигационные системы.

Основная задача самолетовождения сводится к определению места самолета. В современных условиях эту задачу можно решить с помощью ИСЗ, которые являются новыми перспективными средствами самолетовождения. Искусственные спутники, являясь небесными телами, имеют ряд преимуществ перед естественными небесными светилами - они оснащены приемопередающей аппаратурой, что позволяет измерять не только угловые координаты ИСЗ, но и использовать свойства радиоволн для определения дальности до них.

Рассмотрим кратко принцип работы спутниковой навигационной системы на примере спутниковой системы навигации «Навстар». В ее состав (рис. 7.21) входят: один или несколько ИСЗ; сеть следящих станций; вычислительный центр; передающий центр; самолетное бортовое оборудование. Количество спутников, их высота и положение орбит определяется практическими соображениями по обеспечению полетов в необходимых районах.

Сеть следящих станций обеспечивает слежение за спутниками и определение точного их положения. Число станций зависит от необходимой продолжительности слежения. Станции располагаются в пунктах с точно известными координатами. Данные станций слежения поступают в вычислительный центр, где с помощью ЭВМ производится вычисление эфемерид ИСЗ, которые

затем передаются передающим центром на спутник, а оттуда посылаются абонентам в виде части навигационного сигнала.

Бортовое оборудование в зависимости от типа самолета может включать самолетный приемопередатчик, радиосекстант, оборудование доплеровской системы для работы с ИСЗ, радиолокационный приемник для угломерно-дальномерной системы и цифровую вычислительную машину (ЦВМ) с помощью которой производится обработка спутниковых сигналов и автоматическое определение места самолета с выдачей его на индикатор.

Рис. 7.21. Общий принцип работы спутниковой навигационной системы

Для снижения стоимости бортового оборудования в некоторых системах предусматривается определение места самолета производить на земле с помощью ЭВМ. Затем данные о месте самолета через релейные станции на ИСЗ передаются диспетчером УВД на борт самолета для решения экипажем навигационных задач.

Спутниковые навигационные системы могут быть следующих типов: угломерные, дальномерные и доплеровские.

Угломерные спутниковые системы основаны на измерении бортовым устройством угловых высот двух спутников. В процессе измерения высот аппаратура, установленная на спутниках, передает на самолет их координаты. Измеренные высоты и поступившая информация о положении спутников автоматически обрабатываются бортовой вычислительной аппаратурой, которая выдает текущие географические координаты места самолета.

Дальномерные спутниковые системы основаны на измерении дальности до двух спутников и высоты полета самолета. Измерение дальностей до двух спутников позволяет получить на земной поверхности два круга равных дальностей. Пересечение этих кругов дает место самолета. Центром круга равных дальностей является географическое место ИСЗ. Место самолета определяется бортовым автоматическим вычислительным устройством по известным траекторным элементам спутников, высоте полета и дальностям до двух спутников.

Доплеровские спутниковые системы основаны на принципе определения доплеровского сдвига частоты принятых на самолете сигналов ИСЗ. Такая система состоит из одного или нескольких спутников, положение орбит которых во времени точно известно. На спутнике установлен передатчик со строго стабилизированной частотой излучения навигационных сигналов. Эти сигналы передаются через установленный интервал времени. С помощью приемника на самолете определяется доплеровский сдвиг частоты. Интегрирование полученного сдвига частоты обеспечивает нахождение дальности до спутника. Три таких измерения позволяют определить место самолета, как и в дальномерной системе. В доплеровской системе не обеспечивается непрерывное определение места самолета. Но при этом можно обойтись без угловых измерений, требующих стабилизации платформы антенны на самолете, значительно усложняющей бортовую аппаратуру.

Спутниковые навигационные системы имеют неоспоримые преимущества перед другими системами и их внедрение позволит повысить надежность и безопасность выполнения полетов над любыми районами земного шара.


Большинство космических полётов выполняется не по круговым, а по эллиптическим орбитам, высота которых меняется в зависимости от местоположения над Землёй. Высота так называемой «низкой опорной» орбиты, от которой «отталкивается» большинство космических кораблей, равна примерно 200 километрам над уровнем моря. Если быть точным, перигей такой орбиты равен 193 километрам, а апогей составляет 220 километров. Однако на опорной орбите имеется большое количество мусора, оставленного за полвека освоения космоса, поэтому современные космические корабли, включив свои двигатели, перебираются на более высокую орбиту. Так, например, Международная Космическая Станция (МКС ) в 2017 году вращалась на высоте порядка 417 километров , то есть в два раза выше опорной орбиты.

Высота орбиты большинства космиечских кораблей зависит от массы корабля, места его запуска и мощности его двигателей. У космонавтов она варьируется от 150 до 500 километров. Так, например, Юрий Гагарин летел на орбите с перигеем в 175 км и апогеем в 320 км. Второй советский космонавт Герман Титов летел на орбите с перигеем в 183 км и апогеем в 244 км. Американские «челноки» летали на орбитах высотой от 400 до 500 километров . Примерно такая же высота и у всех современных кораблей, доставляющих людей и грузы на МКС.

В отличие от пилотируемых космических кораблей, которым надо вернуть космонавтов на Землю, искусственные спутники летают на гораздо более высоких орбитах. Высота орбиты спутника, вращающегося на геостационарной орбите, может быть рассчитана, опираясь на данные о массе и диаметре Земли. В результате нехитрых физических расчетов можно выяснить, что высота геостационарной орбиты , то есть такой, при которой спутник «зависает» над одной точкой на поверхности земли, равна 35 786 километрам . Это очень большое удаление от Земли, поэтому время обмена сигналом с таким спутником может достигать 0,5 секунд, что делает его непригодным, например, для обслуживания онлайн-игр.

Сегодня 15 января 2020 года. А вы знаете, какой сегодня праздник ?



Расскажите Какова высота орбиты полёта космонавтов и спутников друзьям в социальных сетях:

Геостационарная орбита с нулевым наклонением и высотой в 35756 км и по сегодняшний день остаётся стратегически важной орбитой для искусственных спутников Земли. Размещенные на этой орбите спутники обращаются вокруг центра Земли с той же угловой скоростью, как и земная поверхность. Благодарю этому, для спутниковых антенн отсутствует необходимость слежения за геостационарными спутниками - геостационарный спутник для определенного места поверхности Земли всегда расположен в одной точке неба.



Пример группировки российских геостационарных спутников связи в 2005 году:

Но проверка последнего графика с помощью сайта Гюнтера показывает, что в 2017 году было запущено не более 40 геостационарных спутников, даже если в это число включать запуски спутников на ГПО (геопереходную орбиту) и орбиты типа Молния (Космос-2518 ). В связи с этим разночтением я попытался самостоятельно оценить динамику ежегодных запусков на геостационарную орбиту и динамику изменения общей массы запускаемых геостационарных спутников с помощью того же сайта Гюнтера.

Большинство геостационарных спутников запускаются на геопереходные орбиты (ГПО) , и затем уже осуществляют с помощью собственных двигателей подъем перигелия и выход на геостационарную орбиту. Это вызвано стремлением минимизировать засорение стратегически важной геостационарной орбиты (разгонные блоки РН на ГПО сгорают гораздо быстрее, чем на ГСО из-за низкого перигелия орбит). В связи с этим чаще всего указывается стартовая масса геостационарных спутников при первоначальном выводе на ГПО. Поэтому я решил подсчитывать массу геостационарных спутников на ГПО, а так же включать в расчет спутники, которые были изначально предназначены для работы на ГПО или других эллиптических орбитах, находящихся между низкими и геостационарными орбитами (в основном это орбиты типа Молния). С другой стороны в некоторых случаях осуществляется прямой вывод спутников на геостационарную орбиту (к примеру, в случае советских, российских и американских военных спутников), кроме того для военных спутников масса часто просто неизвестна (в этом случае приходится указывать верхний предел возможностей РН при запусках на ГПО). В связи с этим расчеты являются лишь предварительными. На данный момент удалось обработать 35 годов из 60 лет космической эры, и имеет место следующая ситуация по годам:

1) По выводимой массе на ГПО и Молния орбиты в 2017 году действительно был установлен новый рекорд (192 тонны):

2) По количеству запускаемых аппаратов на эти типы орбит особого роста не наблюдается (черная линия - это линия тренда):

3) Похожая ситуация наблюдается и с количеством запусков:

В целом наблюдается тенденция стабильного увеличения грузопотока на высокоэллиптические высокие орбиты. Средние значения по десятилетиям:

По средней площади космических объектов (cumulative cross sectional area , измеряется в квадратных метрах) геостационарные спутники ещё больше превосходят низкоорбитальные аппараты (даже если учитывать разгонные блоки - RB ):

Вероятно, это связано с большим количеством разворачиваемых конструкций у геостационарных спутников (антенн, солнечных батарей и батарей терморегуляции).

С годами непрерывно растет и количество работающих спутников на геостационарной орбите. Только в нынешнем десятилетии их число выросло с четырех до пяти сотен:

Согласно базе данных действующих спутников в настоящее время старейшим действующим спутником на ГСО является спутник-ретранслятор TDRS-3 , запущенный в 1988 году. Всего сейчас на ГСО работают 40 аппаратов, чей возраст превысил 20 лет:

Общее число геостационарных спутников с учетом орбит захоронения уже превышает тысячу аппаратов (при минимальном количестве разгонных блоков (RB ) ракет на этих орбитах):

Примеры геостационарных группировок спутников:

Растущая переполненность геостационарной орбиты приводит к продолжению тенденции утяжеления геостационарных спутников. Если первые ГСО спутники весили всего 68 кг, то в 2017 году Китай попытался запустить 7.6-тонный аппарат . Очевидно, что растущая переполненность геостационарной орбиты приведет в будущем к созданию там крупных геостационарных платформ с элементами многоразового использования. Вероятно, подобные платформы будут решать сразу несколько задач: связь и наблюдение за поверхностью Земли для метеорологии, оборонных нужд и так далее.


Геостационарный спутник связи массой в 7.6 тонн, созданный на базе новой китайской платформы DFH-5