Значение биологии. Роль биологии в современном мире практической деятельности людей Значение науки биологии в жизни современного общества

Направлений использования человеком знаний по биологии очень много, для примера приведем несколько (пойдем от большого к меньшему):

· Знаниезаконов экологии позволяет регулировать деятельность человека в пределах сохранения той экосистемы, в которой он живет и работает (рациональное природопользование);

· Ботаника и генетика позволяют повышать урожайность, бороться с вредителями и выводить новые, нужные и полезные сорта;

· Генетика на данный момент настолько плотно переплелась с медициной , что многие заболевания, которые раньше считались неизлечимыми, изучаются и предупреждаются уже на эмбриональных стадиях развития человека;

· С помощью микробиологии ученые всего мира разрабатывают сыворотки и вакцины против вирусов и самые различные противобактериальные препараты.

Отличия живых структур от неживых. Свойства живого

Биология – наука, изучающая свойства живых систем. Однако определить, что такое живая система, достаточно сложно. Грань между живым и неживым провести не так легко, как кажется. Попробуйте ответить на вопросы, являются ли живыми вирусы, когда они покоятся вне организма хозяина и в них не идет обмен веществ? Могут ли проявлять свойства живого искусственные объекты и машины? А компьютерные программы? Или языки?

Чтобы ответить на эти вопросы, можно попытаться вычленить минимальный набор свойств, характерный для живых систем. Именно поэтому ученые установили несколько критериев, по которым организм можно отнести к живым.

Важнейшими из характерных свойств (критериев)живого являются следующие:

1. Обмен веществом и энергией с окружающей средой. С точки зрения физики все живые системы – открытые , то есть постоянно обмениваются со средой и веществом, и энергией, в отличие от закрытых , полностью изолированных от окружающего мира, и полузакрытых , обменивающихся только энергией, но не веществом. Далее мы увидим, что этот обмен является обязательным условием существования жизни.

2. Живые системы способны к накоплению поступивших из среды веществ и, вследствие этого, росту .

3. Современная биология считает основополагающим свойством живых существ способность к идентичному (или почти идентичному) самовоспроизведению , то есть размножению с сохранением большинства свойств исходного организма.

4. Идентичное самовоспроизведение неразрывно связано с понятием наследственности , то есть передачи потомству признаков и свойств.

5. Однако наследственность не абсолютна – если бы все дочерние организмы в точности копировали родительские, то никакая эволюция была бы невозможна, так как живые организмы никогда бы не изменялись. Это привело бы к тому, что при любом резком изменении условий все они бы погибли. Но жизнь чрезвычайно гибка, и организмы приспосабливаются к широчайшему спектру условий. Это возможно благодаря изменчивости – тому факту, что самовоспроизведение организмов не полностью идентично, в ходе него возникают ошибки и вариации, которые могут быть материалом для отбора. Существует определенное равновесие между наследственностью и изменчивостью.

6. Изменчивость может быть наследственной и ненаследственной. Наследственная изменчивость, то есть появление новых вариаций признаков, которые наследуются и закрепляются в ряду поколений, служит материалом для естественного отбора . Естественный отбор возможен среди любых воспроизводящихся объектов, не обязательно живых, если между ними существует конкуренция за ограниченные ресурсы. Те объекты, которые вследствие изменчивости приобрели неподходящие в данной среде, неблагоприятные признаки, будут отбраковываться, поэтому признаки, которые дают конкурентное преимущество в борьбе, будут встречаться все чаще и чаще у новых объектов. Это и есть естественный отбор – творческий фактор эволюции, благодаря которому возникло все многообразие живых организмов на Земле.

7. Живые организмы активно реагируют на внешние сигналы, проявляя свойствораздражимости .

8. Благодаря своей способности реагировать на изменение внешних условий живые организмы способны к адаптации – приспособлению к новым условиям. Это свойство, в частности, позволяет организмам переживать различные катаклизмы и распространяться на новые территории.

9. Адаптация осуществляется путем саморегуляции , то есть способности к поддержанию постоянства определенных физических и химических параметров в живом организме, в том числе и в меняющихся условиях среды. Например, организм человека поддерживает постоянную температуру, концентрацию в крови глюкозы и многих других веществ.

10. Важным свойством земной жизни является дискретность , то есть прерывистость: она представлена отдельными особями, особи объединены в популяции, популяции – в виды, и т. д., то есть на всех уровнях организации живого существуют отдельные единицы. В фантастическом романе Станислава Лема «Солярис» описан огромный живой океан, покрывающий всю планету. Но на Земле таких форм жизни нет.

Химический состав живого

Живые организмы состоят из огромного числа химических веществ, органических и неорганических, полимерных и низкомолекулярных. В живых системах найдены многие химические элементы, присутствующие в окружающей среде, однако необходимы для жизни лишь около 20 из них. Эти элементы получили название биогенных .

В процессе эволюции от неорганических веществ к биоорганическим основой использования тех или иных химических элементов при создании биосистем является естественный отбор. В результате такого отбора основу всех живых систем составляют только шесть элементов: углерод, водород, кислород, азот, фосфор, сера, получивших название органогенов. Их содержание в организме достигает 97,4%.

Органогены - главные химические элементы, входящие в состав органических веществ: углерод, водород, кислород и азот.

С точки зрения химии естественный отбор элементов-органогенов можно объяснить их способностью образовывать химические связи: с одной стороны, достаточно прочные, то есть, энергоемкие, а с другой, достаточно лабильные, которые легко могли бы поддаваться гемолизу, гетеролизу, циклическому перераспределению.

Органогеном номер один, несомненно, является углерод. Его атомы образуют прочные ковалентные связи между собой или с атомами других элементов. Эти связи могут быть ординарными или кратными, благодаря таким 3 связям углерод способен образовывать сопряженные или кумулированные системы в виде открытых или закрытых цепей, циклов.

В отличие от углерода, элементы-органогены водород и кислород лабильные связи не образуют, но их наличие в органической, в том числе, в биоорганической молекуле определяет ее способность взаимодействовать с биорастворителем-водой. Кроме того, водород и кислород являются носителями окислительно-восстановительных свойств живых систем, они обеспечивают единство окислительно- восстановительных процессов.

Остальные три органогена – азот, фосфор и сера, а также некоторые другие элементы – железо, магний, составляющие активные центры ферментов, как и углерод, способны образовывать лабильные связи. Положительным свойством органогенов является также и то, что они, как правило, образуют легко растворимые в воде соединения и поэтому концентрируются в организме.

Существует несколько классификаций химических элементов, содержащихся в организме человека. Так, В.И.Вернадский в зависимости от среднего содержания в живых организмах разделил элементы на три группы:

1. Макроэлементы. Это элементы, содержание которых в организме выше 10 - ² % . К ним относятся углерод, водород, кислород, азот, фосфор, сера, кальций, магний, натрий и хлор, калий, железо. Эти так называемые универсальные биогенные элементы, присутствующие в клетках всех организмов.

2. Микроэлементы. Это элементы, содержание которых в организме находится в пределах от 10 - ² до 10 - ¹² %. К ним относятся йод, медь, мышьяк, фтор, бром, стронций, барий, кобальт. Хотя этих элементов содержится в организмах в крайне низких концентрациях (не выше тысячной доли процента), но они также необходимы для нормальной жизнедеятельности. Это биогенные микроэлементы . Их функции и роль весьма разнообразны. Многие микроэлементы входят в состав ряда ферментов, витаминов, дыхательных пигментов, некоторые влияют на рост, скорость развития, размножение и т. д.

3. Ультрамикроэлементы. Это элементы, содержание которых в организме ниже 10- ¹²%. К ним относятся ртуть, золото, уран, радий и др.

В.В.Ковальский, исходя из степени значимости химических элементов для жизнедеятельности человека, подразделил их на три группы:

1. Незаменимые элементы. Они постоянно находятся в организме человека, входят в состав его неорганических и органических соединений. Это H, O, Ca, N, K, P, Na, S, Mg, Cl, C, I, Mn, Cu, Co, Zn, Fe, Mo, V. Дефицит содержания этих элементов приводит к нарушению нормальной жизнедеятельности организма.

2. Примесные элементы. Эти элементы постоянно находятся в организме человека, но их биологическая роль еще не всегда выяснена или мало изучена. Это Ga, Sb, Sr, Br, F, B, Be, Li, Si, Sn, Cs, As, Ba, Ge, Rb, Pb, Ra, Bi, Cd, Cr, Ni, Ti, Ag, Th, Hg, Ce, Se.

3. Микропримесные элементы. Они найдены в организме человека, но ни о количественном содержании, ни о биологической роли их нет. Это Sc, Tl, In, La, Sm, Pr, W, Re, Tb и др. Химические элементы, необходимые для построения и жизнедеятельности клеток и организмов, называют биогенными.

Среди неорганических веществ и компонентов основное место занимает – вода .

Для поддержания ионной силы и рН-среды, при которых протекают процессы жизнедеятельности, необходимы определённые концентрации неорганических ионов. Для поддержания определённой ионной силы и соединения буферной среды необходимо участие однозарядных ионов: аммония(NH4+); натрия(Na+); калия (К+). Катионы не являются взаимозамещёнными, существуют специальные механизмы, поддерживающие необходимый баланс между ними.

Неорганические соединения:

Соли аммония;

Карбонаты;

Сульфаты;

Фосфаты.

Неметаллы :

1. Хлор (основной). В виде анионов участвует в создании солевой среды, иногда входит в состав некоторых органических веществ.

2. Йод и его соединения принимают участие в некоторых процессах жизнедеятельности органических соединений (живых организмов). Йод входит в состав гормонов щитовидной железы (тироксина).

3. Производные селена. Селеноцестеин, входит в состав некоторых ферментов.

4. Кремний – входит в состав хрящей и связок, в виде эфиров ортокремневой кислоты, принимает участие в шивке полисахаридных цепей.

Много соединений в живых организмах представляют собой комплексы : гем – это комплекс железа с плоской молекулой парафина; коболамин.

Магний и кальций – основные металлы , не считая железа, – повсеместно распространены в биосистемах. Концентрация ионов магния имеет важное значение для поддержания целостности и функционирования рибосом, то есть для синтеза белков.

Магний также входит в состав хлорофилла. Ионы кальция принимают участие в клеточных процессах в том числе мышечных сокращений. Нерастворённые соли – участвуют в формировании опорных структур:

Фосфат кальция (в костях);

Карбонат (в раковинах моллюсков).

Ионы металлов 4 периода входят в состав ряда жизненно важных соединений – ферментов . Некоторые белки содержат железо в виде железосерных кластеров. Ионы цинка содержатся в значительном числе ферментов. Марганец входит в состав небольшого числа ферментов, но играет важную роль в биосфере, при фотохимическом восстановлении воды, обеспечивает выделение в атмосферу кислорода и поступление электронов в цепь переноса при фотосинтезе.

Кобальт – входит в состав ферментов в виде – кобаламинов (витамин В 12).

Молибден – необходимый компонент фермента – нитродиназа (который катализует восстановление атмосферного азота до аммиака, в азотфиксирующих бактериях)

Большое число органических веществ входит в состав живых организмов: уксусная кислота; уксусный альдегид; этанол (является продуктами и субстратами биохимических превращений).

Основные группы низкомолекулярных соединений живых организмов:

Аминокислоты – являются составными частями белков

Нуклеамиды – составляющая часть нуклеиновых кислот

Моно и алигосахариды – составляющие структурных тканей

Липиды – составные части клеточных стенок.

Кроме предыдущих существуют:

Кофакторы ферментов – необходимые компоненты значительного числа ферментов, катализируют окислительно-восстановительные реакции.

Коферменты – органические соединения, функционирующие в определённых системах ферментных реакций. Например: никотиноамидоданин динуклеатид (NAD+). В окисленной форме – это окислитель спиртовых групп до карбонильных, при этом образуется восстановитель.

Кофакторы ферментом – сложные органические молекулы, синтезируются из сложных предшественников, которые должны присутствовать в качестве обязательных компонентов пищи.

Для высших животных характерно образование и функционирование веществ управляющих нервной и эндокринной системой – гормоны и нейромедитаторы. Например, гормон надпочечника запускает окислительную переработку гликогена в процессах стрессовой ситуации.

Во многих растениях синтезируется сложный амин обладающий сильным биологическим действием – алкалоиды.

Терпены – соединения растительного происхождения, компоненты эфирных масел и смол.

Антибиотики – вещества микробиологического происхождения, выделяемые специальными видами микроорганизмов, подавляющих рост других конкурирующих микроорганизмов. Механизм их действия разнообразен, например замедление роста белков в бактериях.

Биология -система наук, объектами изучения которой являются живые существа и их взаимодействие с окружающей средой.

Роль биологии в современном обществе, а особенно в медицине, бесценна. Каждый раз, когда мы задумываемся над вопросом о том, какова роль биологии в современном обществе, вспоминаем, что именно благодаря героизму медиков -биологов исчезли с планеты Земля очаги страшных эпидемий: чумы, холеры, брюшного тифа, сибирской язвы, оспы и других не менее опасных для жизни человека заболеваний. Можно смело утверждать, что роль биологии в современном обществе растет непрерывно. Невозможно себе представить современную жизнь без селекции, генетических исследований, производства новых продуктов питания, а также экологичных источников энергии.

Основное значение биологии состоит в том, что она представляет собой фундамент и теоретическую базу для многих перспективных наук, например, таких, как, генетическая инженерия и бионика. Ей принадлежит великое открытие – расшифровка генома человека. Такое направление, как биотехнология, было также создано на основе знаний, объединенных в биологии.

Нестабильная экологическая обстановка на Земле требует переосмысления производственной деятельности, а значение биологии в жизни человека переходит на новую ступень. С каждым годом мы становимся свидетелями широкомасштабных катастроф. Во многом они вызваны ростом населения планеты, неразумным использованием источников энергии, а также существующими экономическими и социальными противоречиями в современном обществе. Настоящее нам четко указывает, что само дальнейшее существование цивилизации возможно только при наличии гармонии в окружающей среде. Только соблюдение биологических закономерностей, а также повсеместное использование прогрессивных биотехнологий на основе экологического мышления позволит обеспечить естественное безопасное сосуществование всем без исключения жителям планеты.

Роль биологии в современном обществе в настоящее время трансформировалась в реальную силу. Благодаря ее знаниям возможно процветание нашей планеты. Именно поэтому на вопрос о том, какова роль биологии в современном обществе, ответ может быть таким – это заветный ключ к гармонии между природой и человеком.

Вопрос 1. Введение в биологию

1. Определение биологии

Биология – наука о жизни . Она изучает жизнь как особую форму движения материи, законы ее существования и развития. Предметом изучения биологии являются живые организмы, их строение, функции, их природные сообщества. Термин «биология», предложенный в 1802 г. впервые Ж.Б. Ламарком, происходит от двух греческих слов: bios - жизнь и logos – наука. Вместе с астрономией, физикой, химией, геологией и другими науками, изучающими природу, биология относится к числу естественных наук. В общей системе знаний об окружающем мире другую группу наук составляют социальные, или гуманитарные (лат. humanitas – человеческая природа), науки, изучающие закономерности развития человеческого общества.

2. Современная биология

Классификацией живых существ занимается систематика.

Ряд биологических наук изучает морфологию, т. е. строение организмов, другие – физиологию, т. е. процессы, протекающие в живых организмах, и обмен веществ между организмами и средой. К морфологическим наукам относятся анатомия, изучающая макроскопическую организацию животных и растений, и гистология – наука о тканях и о микроскопическом строении тела.

Многие общебиологические закономерности являются предметом изучения цитологии, эмбриологии, геронтологии, генетики, экологии, дарвинизма и других наук.

3. Наука о клетке

Цитология – наука о клетке. Благодаря применению электронного микроскопа, новейших химических и физических методов исследования современная цитология изучает строение и жизнедеятельность клетки не только на микроскопическом, но и на субмикроскопическом, молекулярном уровне.

4. Эмбриология и генетика

Эмбриология изучает закономерности индивидуальности развития организмов, развитие зародыша. Геронтология – учение о старении организмов и борьбе за долголетие.

Генетика – наука о закономерностях изменчивости и наследственности. Она является теоретической базой селекции микроорганизмов, культурных растений и домашних животных.

5. Экологические науки
6. Палеонтология. Антропология

Палеонтология изучает вымершие организмы, ископаемые останки прежней жизни.

Дарвинизм , или эволюционное учение, рассматривает общие закономерности исторического развития органического мира.

Антропология – наука о происхождении человека и его рас. Правильное понимание биологической эволюции человека невозможно без учета закономерностей развития человеческого общества, поэтому антропология является не только биологической, но и социальной наукой.

7. Связь биологии с другими науками

Во всех теоретических и практических медицинских науках используются общебиологические закономерности.

Вопрос 2. Методы биологических наук

1. Основные методы биологии

Основными частными методами в биологии являются:

Описательный,

Сравнительный,

Исторический,

Экспериментальный.

Для того чтобы выяснить сущность явлений, необходимо прежде всего собрать фактический материал и описать его. Собирание и описание фактов были главным приемом исследования в ранний период развития биологии , который, однако, не утратил значения и в настоящее время.

Еще в XVIII в. получил распространение сравнительный метод, позволяющий путем сопоставления изучать сходство и различие организмов и их частей. На принципах этого метода была основана систематика и сделано одно из крупнейших обобщений – создана клеточная теория. Сравнительный метод перерос в исторический , но не потерял своего значения и сейчас.

2. Исторический метод

Исторический метод выясняет закономерности появления и развития организмов, становления их структуры и функций. Утверждением в биологии исторического метода наука обязана Ч. Дарвину.

3. Экспериментальный метод

Экспериментальный метод исследования явлений природы связан с активным воздействием на них путем постановки опытов (экспериментов) в точно учитываемых условиях и путем изменения течения процессов в нужном исследователю направлении. Этот метод позволяет изучать явления изолированно и добиваться повторяемости их при воспроизведении тех же условий. Эксперимент обеспечивает не только более глубокое, чем другие методы, проникновение в сущность явлений, но и непосредственное овладение ими.

Высшей формой эксперимента является моделирование изучаемых процессов. Блестящий экспериментатор И.П. Павлов говорил: «Наблюдение собирает то, что ему предлагает природа, опыт же берет у природы то, что он хочет».

Комплексное использование различных методов позволяет наиболее полно познать явления и объекты природы. Происходящее в настоящее время сближение биологии с химией, физикой, математикой и кибернетикой, использование их методов для решения биологических задач оказались весьма плодотворными.

Вопрос 3. Этапы развития биологии

1. Эволюция биологии

Развитие каждой науки находится в известной зависимости от способа производства , общественного строя, потребностей практики, общего уровня науки и техники. Первые сведения о живых организмах начал накапливать еще первобытный человек. Живые организмы доставляли ему пищу, материал для одежды и жилища. Уже в то время появилась необходимость знать свойства растений и животных, места их обитания и произрастания, сроки созревания плодов и семян, особенности поведения животных. Так постепенно не из праздной любознательности, а вследствие насущных повседневных потребностей накапливались сведения о живых организмах. Приручение животных и начало возделывания растений потребовали более глубоких сведений о живых организмах.

Первоначально накапливающийся опыт передавался устно от одного поколения другому. Появление письменности способствовало лучшему сохранению и передаче знаний.

Информация становилась полней и богаче. Однако длительное время вследствие низкого уровня развития общественного производства биологической науки еще не существовало.

2. Изучение биологии в древности

Значительный фактический материал о живых организмах был собран великим врачом Греции Гиппократом (460–377 гг. до н. э.). Ему принадлежат первые сведения о строении животных и человека, описание костей, мышц, сухожилий, головного и спинного мозга. Гиппократ учил: «Необходимо, чтобы каждый врач понимал природу».

Естествознание и философия античного мира в наиболее концентрированном виде представлены в трудах Аристотеля (384–322 гг. до н. э.). Он описал более 500 видов животных и сделал первую попытку их классификации. Аристотель интересовался строением и образом жизни животных. Им были заложены основы зоологии. Аристотель оказал огромное влияние на дальнейшее развитие естествознания и философии. Работы Аристотеля в области изучения и систематизации знаний о растениях продолжил Теофраст (372–287 гг. до н. э.). Его называют «отцом ботаники». Расширением знаний о строении человеческого тела античная наука обязана римскому врачу Галену (139–200 гг. н. э.) производившему вскрытие обезьян и свиней. Труды его оказывали влияние на естествознание и медицину в течение ряда веков. Римский поэт и философ Тит Лукреций Кар , живший в I в. до н. э., в поэме «О природе вещей» выступил против религии и высказал мысль о естественном возникновении и развитии жизни.

3. Упадок науки в Средневековье

На смену рабовладельческому обществу в результате развития производительных сил и производственных отношений пришел феодализм, охватывающий период Средневековья. В эту мрачную эпоху утвердилось господство церкви с ее мистикой и реакционной идеологией. Наука переживала упадок, стала, по выражению К. Маркса , «служанкой богословия». Церковь канонизировала и объявила незыблемой истиной сочинения Аристотеля, Галена , во многом исказив их. Утверждалось, что в естествознании все проблемы уже решены учеными древности, поэтому в изучении живой природы нет необходимости. «Мудрость мира – есть безумие перед богом», – поучала церковь. Библия была объявлена книгой «божественного откровения». Все объяснения явлений природы не должны были противоречить ни Библии, ни сочинениям древних. Церковь жестоко карала всех прогрессивных мыслителей и исследователей, поэтому накопление знаний в эпоху Средневековья шло очень медленно.

4. Эпоха Возрождения и развитие науки

Важным рубежом в развитии науки являлась эпоха Возрождения (XIV–XVI вв.). С этим периодом связано зарождение нового общественного класса – буржуазии. Развивающиеся производственные силы требовали конкретных знаний. Это привело к обособлению ряда наук о природе. В XV–XVIII вв. выделились и интенсивно развивались ботаника, зоология, анатомия, физиология. Однако развивающемуся естествознанию нужно было еще отстаивать свои права на существование, вести жестокую борьбу с церковью. Еще продолжали пылать костры инквизиции. Мигель Сервет (1511–1553 гг.), открывший малый круг кровообращения, был объявлен еретиком и сожжен на костре.

5. Учение Ф. Энгельса

Характерной чертой естествознания того времени было изолированное изучение объектов природы. «Надо был исследовать предметы, прежде чем можно было приступить к исследованию процессов», – писал Ф. Энгельс . Изолированное изучение объектов природы порождало представления о ее неизменности, в том числе неизменности видов. «Видов столько, сколько их создал творец», – считал К. Линней . «Но что особенно характеризует рассматриваемый период, так это – выработка своеобразного общего мировоззрения, центром которого является представление об абсолютной неизменяемости природы», – писал Ф. Энгельс . Этот период в развитии естествознания он называл метафизическим.

Однако, как указывает Ф. Энгельс , уже тогда в метафизических представлениях начинают возникать первые бреши. В 1755 г. появилась «Всеобщая естественная история и теория неба» И. Канта (1724–1804 гг.), в которой он развил гипотезу о естественном происхождении Земли. Через 50 лет эта гипотеза получила математическое обоснование в работе П.С. Лапласа (1749–1827 гг.).

В борьбе с идеалистическими представлениями большую положительную роль сыграли французские материалисты XVIII в. – Ж. Ламетри (1709–1751 гг.), Д. Дидро (1713–1784 гг.) и др.

6. Необходимость нового подхода к изучению природы

В период быстрого развития промышленности и роста городов, потребовавшего резкого увеличения продуктов сельскохозяйственного производства, возникла необходимость в научном ведении земледелия. Потребовалось раскрытие закономерностей жизнедеятельности организмов, истории их развития. Для решения этих задач нужен был новых подход к изучению природы. В науку начинают проникать идеи о всеобщей связи явлений, изменяемости природы, эволюции органического мира.

Академик Российской академии наук К.Ф. Вольф (1733–1794 гг.), исследуя зародышевое развитие животных, выяснил, что индивидуальное развитие связано с новообразованием и преобразованием частей эмбриона. По словам Ф. Энгельса, Вольф произвел в 1759 г. первое нападение на теорию постоянства видов. В 1809 г. Ж.Б. Ламарк (1744–1829 гг.) выступил с первой теорией эволюции. Однако фактического материала для обоснования теории эволюции еще было недостаточно. Ламарку не удалось открыть основные закономерности развития органического мира, и его теория не была признана современниками.

7. Возникновение новых наук

В первой половине XIX в. возникли новые науки – палеонтология, сравнительная анатомия животных и растений, гистология и эмбриология. Знания, накопленные естествознанием в первой половине XIX в., явились прочной основой для эволюционной теории Ч. Дарвина. Его труд «Происхождение видов» (1859 г.) знаменовал собой переломный момент в развитии биологии: с него началась новая эпоха в истории естествознания. Вокруг учения Дарвина возникает ожесточенная идеологическая борьба, но идея эволюционного развития быстро завоевывает всеобщее признание. Вторая половина XIX в. характеризуется плодотворным проникновением идей дарвинизма во все области биологии.

8. Распад науки на отдельные отрасли

Для биологии ХХ в. характерны два процесса. Во-первых, вследствие накопления огромного фактического материала прежние единые науки начинают распадаться на отдельные отрасли. Так, из зоологии выделились энтомология, гельминтология, протозоология и многие другие отрасли, из физиологии – эндокринология, физиология высшей нервной деятельности и т. д. Во-вторых, намечается тенденция к сближению биологии с другими науками : возникли биохимия, биофизика, биогеохимия и др. Появление пограничных наук указывает на диалектическое единство многообразных форм существования и развития материи, способствует преодолению метафизического разобщения в изучении форм ее существования. В последние десятилетия в связи с бурным развитием техники и новейшими достижениями в ряде областей естествознания возникли молекулярная биология, бионика, радиобиология, космическая биология.

Молекулярная биология – область современного естествознания. Используя теоретические основы и экспериментальные методы химии и молекулярной физики, она дает возможность исследовать биологические системы на молекулярном уровне.

Бионика изучает функции и строение организмов с целью использования тех же принципов при создании новой техники. Если до настоящего времени биология была одной из теоретических основ медицины и сельского хозяйства, то ныне становится также одной из основ техники будущего.

Появление радиобиологии – учения о действии ионизирующих излучений на живые организмы – связано с открытием биологического действия рентгеновских и гамма-лучей, особенно после обнаружения природных источников радиоактивности и создания искусственных источников ионизирующих излучений.

До недавнего прошлого биология оставалась чисто земной наукой, изучающей формы жизни только на нашей планете. Однако успехи современной техники, позволившие создать летательные аппараты, способные преодолевать земное притяжение и выходить в космическое пространство, поставили перед биологией ряд новых задач, являющихся предметом космической биологии . В решении вопросов сегодняшнего дня вместе с биологами принимают участие математики, кибернетики, физики, химики и специалисты в других областях естествознания.

Роль биологии в современной действительности переоценить трудно, ведь она подробно изучает жизнь человека во всех ее про-явлениях. В настоящее время эта наука объединяет такие важные понятия, как эволюция, клеточная теория, генетика, гомеостаз и энергия. В ее функции входит исследование развития всего живого, а именно: строение организмов, их поведение, а также -отношения между собой и взаимосвязь с окружающей средой.

Значение биологии в жизни человека становится понятным, если провести параллель между основными проблемами жизнедеятельности индивида, например, здоровьем, питанием, а также выбором оптимальных условий существования. На сегодняшний день известны многочисленные науки, которые отделились от биологии, став не менее важными и самостоятельными. К таким можно отнести зоологию, ботанику, микробиологию, а также вирусологию. Из них трудно выделить наиболее значимые, все они представляют собой комплекс ценнейших фундаментальных знаний, накопленных цивилизацией.

В этой области знаний работали выдающиеся ученые, такие, как Клавдий Гален, Гиппократ, Карл Линней, Чарльз Дарвин, Александр Опарин, Илья Мечников и многие другие. Благодаря их открытиям, особенно изучению живых организмов, появилась наука морфология, а также физиология, которая собрала в себе знания о системах организмов живых существ. Неоценимую роль в развитии наследственных заболеваний сыграла генетика.

Биология стала прочным фундаментом в медицине, социологии и экологии. Важно, что эта наука, как и любая другая, не статична, а постоянно пополняется новыми знаниями, которые трансформируются в виде новых биологических теорий и законов.

Роль биологии в современном обществе, а особенно в медицине, бесценна. Именно с ее помощью были найдены способы лечения бактериологических и быстро распространяющихся вирусных заболеваний. Каждый раз, когда мы задумываемся над вопросом о том, какова роль биологии в современном обществе, вспоминаем, что именно благодаря героизму медиков-биологов исчезли с планеты Земля очаги страшных эпидемий: чумы, холеры, брюшного тифа, сибирской язвы, оспы и других не менее опасных для жизни человека заболеваний.

Можно смело утверждать, опираясь на факты, что роль биологии в современном обществе растет непрерывно. Невозможно себе представить современную жизнь без селекции, генетических исследований, производства новых продуктов питания, а также экологичных источ-ников энергии.

Основное значение биологии состоит в том, что она представляет собой фундамент и теоретическую базу для многих перспективных наук, например, таких, как, генетическая инженерия и бионика. Ей принадлежит великое открытие - расшифровка генома человека. Такое направление, как биотехнология, было также создано на основе знаний, объединенных в биологии. В настоящее время именно такого характера технологии позволяют создавать безопасные лекарства для профилактики и лечения, которое не наносит вреда организму. В результате удается увеличить не только продолжительность жизни, но и ее качество.

Роль биологии в современном обществе заключается и в том, что есть такие сферы, где ее знания просто необходимы, например, фармацевтическая промышленность, геронтология, криминалистика, сельское хозяйство, строительство, а также освоение космоса.

Нестабильная экологическая обстановка на Земле требует переосмысления производственной деятельности, а значение биологии в жизни человека переходит на новую ступень. С каждым годом мы становимся свидетелями широкомасштабных катастроф, которые поражают как беднейшие государства, так и высокоразвитые. Во многом они вызваны ростом населения планеты, неразумным использованием источников энергии, а также существующими экономическими и социальными противоречиями в современном обществе.

Настоящее нам четко указывает, что само дальнейшее существование цивилизации возможно только при наличии гармонии в окружающей среде. Только соблюдение биологических закономерностей, а также повсеместное использование прогрессивных биотехнологий на основе экологического мышления позволит обеспечить естественное безопасное сосуществование всем без исключения жителям планеты.

Роль биологии в современном обществе выражается в том, что она в настоящее время трансформировалась в реальную силу. Благодаря ее знаниям возможно процветание нашей планеты. Именно поэтому на вопрос о том, какова роль биологии в современном обществе, ответ может быть таким - это заветный ключ к гармонии между природой и человеком.

1. Химический состав . Живые организмы состоят из тех же химических элементов, что и неживые, но в организмах есть молекулы веществ, характерных только для живого (нуклеиновые кислоты, белки, липиды).

2. Дискретность и целостность . Любая биологическая система (клетка, организм, вид) состоит из отдельных частей, т.е. дискретна. Взаимодействие этих частей образует целостную систему (например, в состав организма входят отдельные органы).

3. Структурная организация . Все живые системы - это комплекс сложных саморегулирующихся процессов обмена веществ, протекающих в определенном порядке, направленном на поддержание постоянства внутренней среды.

4. Раздражимость и движение . Все живое реагирует на внешние воздействия благодаря свойству раздражимости . Например, растения реагируют на раздражители в виде тропизмов (изменения направления роста по направлению к свету). Животные отвечают на воздействие движением (убегают при виде опасности, движутся к пище и т.п.).

5. Саморегуляция и гомеостаз . Действие раздражителей внешней среды приводит к изменению состояния организма. Способность организма противостоять воздействиям среды обеспечивается гомеостазом. Гомеостаз – постоянство внутренней среды организма. Гомеостаз поддерживается координированной деятельностью клеток, тканей и органов организма, что является признаком саморегуляции.

6. Обмен веществ и энергии . Живые организмы – открытые системы, обменивающиеся веществом и энергией с окружающей средой.

7. Самовоспроизведение и самообновление . Самовоспроизведение реализуется через разные формы размножения (бесполое и половое). Самообновление – процесс создания новых клеток и уничтожения лишних в одном организме.

8. Живому организму свойственна наследственность, которая обеспечивается свойствами молекулы ДНК. При этом могут возникнуть нарушения, которые ведут к изменению признаков у потомков - изменчивости .

9. Рост и развитие . Организмы наследуют генетическую информацию о развитии тех или иных признаков от своих родителей. Это происходит во время индивидуального развития – онтогенеза . На определенном этапе онтогенеза осуществляется рост организма – увеличение размеров за счет биосинтеза новых молекул и увеличения количества клеток. Рост сопровождается развитием – необратимым процессом изменений с момента рождения до смерти.

10. Эволюция . Эволюция – процесс развития и изменения жизненных форм, характеризуется повышением уровня организации представителей последующих поколений по сравнению с предшествующими поколениями.

4. Практическое значение биологии

Биологические знания крайне важны потому, что биология служит теоретической основой для многих научных и прикладных направлений – медицины, сельского хозяйства, биотехнологии и др.

Еще Гиппократ отмечал: «Необходимо, чтобы каждый врач понимал природу». Во всех медицинских науках используются биологические знания. Например, достижения молекулярной биологии, биохимии и микробиологии позволяют бороться с разными заболеваниями человека на клеточном уровне. Так, микробиологическая промышленность производит многие антибиотики, помогающие бороться с разными заболеваниями человека.

Знание законов генетики даёт возможность получать новые высокопродуктивные сорта растений, породы животных. Знание экологии промысловых видов животных (например, рыбы) позволяет планировать нормы их отлова, не снижающие естественную продуктивность. Большое внимание в последние годы уделяется созданию генетически модифицированных организмов, в том числе продуктов питания (соя, томаты, картофель и др.). По сравнению с исходными формами они более урожайны, устойчивы к болезням и пр. При участии биологов проводятся мероприятия по интродукции (поселение в новые местообитания) и акклиматизации растений и животных.

Наблюдая за состоянием растений и животных, биологи оценивают экологическую ситуацию в конкретном регионе, давая оценку среде обитания человека.

Роль биологии в современном обществе

Роль биологии в современной действительности переоценить трудно, ведь она подробно изучает жизнь человека во всех ее про­явлениях. В настоящее время эта наука объединяет такие важные понятия, как эволюция, клеточная теория, генетика, гомеостаз и энергия. В ее функции входит исследование развития всего живого, а именно: строение организмов, их поведение, а также ­отношения между собой и взаимосвязь с окружающей средой.

Значение биологии в жизни человека становится понятным, если провести параллель между основными проблемами жизнедеятельности индивида, например, здоровьем, питанием, а также выбором оптимальных условий существования. На сегодняшний день известны многочисленные науки, которые отделились от биологии, став не менее важными и самостоятельными. К таким можно отнести зоологию, ботанику, микробиологию, а также вирусологию. Из них трудно выделить наиболее значимые, все они представляют собой комплекс ценнейших фундаментальных знаний, накопленных цивилизацией.

В этой области знаний работали выдающиеся ученые, такие, как Клавдий Гален, Гиппократ, Карл Линней, Чарльз Дарвин, Александр Опарин, Илья Мечников и многие другие. Благодаря их открытиям, особенно изучению живых организмов, появилась наука морфология, а также физиология, которая собрала в себе знания о системах организмов живых существ. Неоценимую роль в развитии наследственных заболеваний сыграла генетика.

Биология стала прочным фундаментом в медицине, социологии и экологии. Важно, что эта наука, как и любая другая, не статична, а постоянно пополняется новыми знаниями, которые трансформируются в виде новых биологических теорий и законов.

Роль биологии в современном обществе, а особенно в медицине, бесценна. Именно с ее помощью были найдены способы лечения бактериологических и быстро распространяющихся вирусных заболеваний. Каждый раз, когда мы задумываемся над вопросом о том, какова роль биологии в современном обществе, вспоминаем, что именно благодаря героизму медиков-биологов исчезли с планеты Земля очаги страшных эпидемий: чумы, холеры, брюшного тифа, сибирской язвы, оспы и других не менее опасных для жизни человека заболеваний.

Можно смело утверждать, опираясь на факты, что роль биологии в современном обществе растет непрерывно. Невозможно себе представить современную жизнь без селекции, генетических исследований, производства новых продуктов питания, а также экологичных источ­ников энергии.

Основное значение биологии состоит в том, что она представляет собой фундамент и теоретическую базу для многих перспективных наук, например, таких, как, генетическая инженерия и бионика. Ей принадлежит великое открытие – расшифровка генома человека. Такое направление, как биотехнология, было также создано на основе знаний, объединенных в биологии. В настоящее время именно такого характера технологии позволяют создавать безопасные лекарства для профилактики и лечения, которое не наносит вреда организму. В результате удается увеличить не только продолжительность жизни, но и ее качество.

Роль биологии в современном обществе заключается и в том, что есть такие сферы, где ее знания просто необходимы, например, фармацевтическая промышленность, геронтология, криминалистика, сельское хозяйство, строительство, а также освоение космоса.

Нестабильная экологическая обстановка на Земле требует переосмысления производственной деятельности, а значение биологии в жизни человека переходит на новую ступень. С каждым годом мы становимся свидетелями широкомасштабных катастроф, которые поражают как беднейшие государства, так и высокоразвитые. Во многом они вызваны ростом населения планеты, неразумным использованием источников энергии, а также существующими экономическими и социальными противоречиями в современном обществе.

Настоящее нам четко указывает, что само дальнейшее существование цивилизации возможно только при наличии гармонии в окружающей среде. Только соблюдение биологических закономерностей, а также повсеместное использование прогрессивных биотехнологий на основе экологического мышления позволит обеспечить естественное безопасное сосуществование всем без исключения жителям планеты.

Роль биологии в современном обществе выражается в том, что она в настоящее время трансформировалась в реальную силу. Благодаря ее знаниям возможно процветание нашей планеты. Именно поэтому на вопрос о том, какова роль биологии в современном обществе, ответ может быть таким – это заветный ключ к гармонии между природой и человеком.

Значение биологии в медицине. Связь биологии с медициной

Медицина XXI века практически полностью основана на достижениях биологии. Группы ученых, которые занимаются такими отраслями науки, как генетика, молекулярная биология, иммунология, биотехнология, вносят свой вклад в развитие современных методов борьбы с заболеваниями. Это и доказывает связь биологии с медициной.

Биология играет большую роль в развитии медицины

Современные биологические открытия позволяют человечеству выйти на принципиально новый уровень в развитии медицины. Например, японские ученые смогли выделить и размножить естественным путем стволовые клетки, полученные из тканей обычного среднестатистического мужчины. Подобные открытия, несомненно, могут повлиять на медицину будущего.

Экспериментальная биология и медицина тесно связаны. Из отраслей биологии это касается не только генетики, молекулярной биологии или биотехнологии, но и таких фундаментальных направлений как ботаника, физиология растений, зоология и, конечно же, анатомия и физиология человека. Глубокие исследования новых видов растений и животных могут дать толчок к открытию безвредных, природных способов борьбы с заболеваниями. Открытия в области анатомии и физиологии способны привести к качественному улучшению процесса лечения, реабилитации или проведения операций.

Проблемы медицины

Современный уровень медицины принципиально отличается от такового, существовавшего 20-30 лет назад. Уменьшилось число детской смертности, увеличился период продолжительности жизни. Но все же сегодня некоторые вопросы не под силу решить даже лучшим врачам.

Возможно, главной проблемой современной медицины является финансирование. Открытие новых препаратов, создание протезов, выращивание органов и тканей – все это требует фантастических затрат. Эта проблема касается и самих пациентов. Большинство сложных хирургических операций требует крупную сумму денег, а некоторые препараты забирают практически всю месячную зарплату. Развитие биологии и открытия во многих ее областях может привести к качественному скачку в медицине, которая станет дешевле, но вместе с тем и совершеннее.

Фундаментальная медицина и биология

Значение биологии в медицине нельзя переоценить: простейшие операции требуют высоких умений в области практической анатомии. Знать строение человека, функции органов, расположение каждого сосуда и нерва – все это является неотъемлемой частью обучения в любом медицинском университете.

Хирургия – это лишь одно из направлений современной медицины. Благодаря многочисленным открытиям в области биологии, человек может получить специализированное и профессиональное лечение. Врач-хирург с помощью новейшего оборудования способен провести высокоуровневые операции, в том числе трансплантации органов и тканей. Уже в 2009 годы была проведена первая операция по пересадке сердца и почки. Все это было достигнуто с помощью открытий ученых-биологов, поэтому роль биологии в медицине неоспорима.

Генетика в медицине

Большое значение биологии в медицине также связано с изучением наследственных заболеваний человека. Изучая передачу генов из поколения в поколение, ученые смогли открыть ряд генетических заболеваний. Сюда же относят и наиболее опасные из них: синдом Дауна, муковисцидоз, гемофилию.

Сегодня стало возможным предсказать появление генетических заболеваний у ребенка. Если некая пара хочет проанализировать, возможно ли появление подобных болезней у их детей, они могут обратиться в специальные клиники. Там, изучив генеалогическое древо родителей, могут высчитать процент появления отклонений у малыша.

Секвенирование генома человека

Прочитать геном человека – одна из важнейших задач современной биологии. Она была решена уже к 2008 году, однако свойства этого генома окончательно не изучены. Предполагается, что в будущем можно будет перейти на персональную медицину с использованием индивидуального паспорта генома человека. Почему так важно узнать генетическую последовательность?

Каждый человек – это индивидуальный организм. Препарат, который способен вылечить заболевание у одного человека, может вызвать побочное воздействие у другого. Сегодня врачи не могут точно предугадать, возникнут ли негативные последствия при воздействии того или иного антибиотика, лекарства. Если геном каждого человека полностью расшифруют, курс лечения будет подобран индивидуально для каждого пациента. Это не только повысит эффективность терапии, но и поможет избежать побочного воздействия препаратов.

Секвенирование генома бактерий, растений и животных уже сегодня приносит свои плоды. Современные ученые-биологи способны использовать гены других организмов в собственных целях. Здесь роль биологии в медицине обусловлена тем, что полезные для человека гены могут помочь при лечении множества заболеваний. Так, бактерии, синтезирующие природный инсулин, уже не выдумка. Более того, производство инсулина проводится в промышленных масштабах на специальных фабриках, где бактерии специально культивируются, а их штаммы используются для получения нужного гормона. В итоге человек, который болен сахарным диабетом, может поддерживать нормальную жизнедеятельность.

Биотехнологии – будущее медицины

Биотехнология – это молодая и вместе с тем одна из важнейших отраслей биологии. На современном этапе развития медицины уже открыто множество способов борьбы с заболеваниями. Среди них - антибиотики, лекарственные препараты животного и растительного происхождения, химические препараты, вакцины. Однако существует проблема, при которой с течением времени эффективность некоторых антибиотиков и лекарств уменьшается. Связано это с тем, что микроорганизмы, особенно бактерии и вирусы, постоянно мутируют, приспосабливаясь к новым методам борьбы с препаратами.

Биотехнологии в будущем позволят изменять структуру веществ, создавая новые виды медикаментов. К примеру, можно будет осуществить конформационное изменение молекулы пенициллина, в результате чего мы получим другое вещество с теми же свойствами.

Опухолевые заболевания – это острая проблема современной медицины. Борьба с раковыми клетками является целью первостепенной важности для ученых по всему миру. На сегодняшний день известны такие вещества, которые способны подавлять развитие опухоли. К ним относятся блеомицин и антрациклин. Однако главная проблема состоит в том, что использование таких препаратов может привести к нарушению и остановке работы сердца. Считается, что изменение строения блеомицина и антрациклина избавит от нежелательного воздействия на организм человека. Это только подтверждает большое значение биологии в медицине.


Использование стволовых клеток

Сегодня многие ученые считают, что стволовые клетки – это путь к вечной молодости. Связано это с их специфическими свойствами.

Стволовые клетки способны дифференцироваться абсолютно в любые клетки и ткани организма. Они могут дать начало клеткам крови, нервным клеткам, костным и мышечным клеткам. Зародыш человека полностью состоит из стволовых клеток, что объясняется необходимостью в постоянном делении и построении систем органов и тканей. С возрастом количество стволовых клеток в организме человека уменьшается, что является одной из причин старения.

При трансплантации органов и тканей существует проблема отторжения чужеродных клеток организмом. Это может привести порой к летальному исходу. Чтобы избежать подобной ситуации, ученые сделали попытку выращивания органов из стволовых клеток человека. Такой способ открывает огромные перспективы для трансплантологии, т. к. органы, синтезированные из клеток пациента, не будут отторгаться его организмом.


Биология в современной медицине

Качественное лечение заболеваний напрямую зависит от достижений в области биологии. Огромное значение биологии в медицине также объясняется тем, что современные отрасли науки направлены на совершенствование методов борьбы с болезнями человека. Уже в недалеком будущем человек сможет вылечиться от рака, СПИДа, диабета. Генетические заболевания можно будет обойти еще в младенчестве, а создание идеального человека уже не будет выдумкой.

Большая советская энциклопедия. - М.: Советская энциклопедия. 1969-1978.

Значение биологии в жизни человека

Люди помогите найти сайт где красиво расписан этот вопрос.
Если кто-то понимает украинский язык, желательно на украинском.

Мила

Биология является теоретической базой медицины, охраны природы и рационального природопользования и приобретает все большее и большее значение в научно-техническом прогрессе как новая производительная сила. Она создает новую технологию – биологическую, которая является предпосылкой новой индустриальной революции. Биологическая культура является частью общей культуры человека. Она проявляется в знаниях, мировоззрении человека и в его поступках по отношению к живой природе. Многовековая, полная драматизма история биологии отражает борьбу взглядов и идей, вбирает в себя особенности общественного развития в то или иное время. С другой стороны, естественнонаучные знания и достижения биологических наук оказывали самое действенное влияние на развитие самого общества с древних времен и до наших дней. Изучение истории биологии позволит проследить постепенное становление ведущих идей о развитии природы, торжество одних взглядов и заслуженное или незаслуженное отрицание других

Оля корзина

1. Современная биология стала реальной производительной силой.
2. Без биологического и экологического мышления существование цивилизации невозможно.
3. Биология медицине: изучение и разработка способов борьбы с паразитарными, бактериологическими, вирусными заболеваниями, обучение специалистов.
4. Биология - фундамент многим наукам, в том числе - медицины, социологии и экологии.
5. Биотехнология - поставщик сырья, лекарств, и других важных ресурсов.
6. Сферы жизни человека, где необходимы биологические знания: криминалистика, геронтология, дрессура животных, сельское хозяйство, промышленность, фармацевтия, строительство, космос и др.